Topic Review
Polymer-Based Materials for Space Radiation Shielding
Space exploration requires the use of suitable materials to protect astronauts and spacecraft components (e.g. onboard electronics) from the hazardous effects of radiation, in particular, ionizing radiation, which is ubiquitous in the hostile space environment. In this scenario, polymer-based materials and composites play a crucial role in achieving effective radiation shielding while providing low-weight and tailored mechanical properties to different types of spacecraft elements.
  • 60
  • 21 Mar 2024
Topic Review
Structural Supercapacitors
Structural supercapacitors (SSCs) are multifunctional energy storage composites (MESCs) that combine the mechanical properties of fiber-reinforced polymers and the electrochemical performance of supercapacitors to reduce the overall mass in lightweight applications with electrical energy consumption. These novel MESCs have huge potentials, and their properties have improved dramatically since their introduction in the early 2000’s. However, the current properties of SSCs are not sufficient for complete energy supply of electrically driven devices. 
  • 93
  • 12 Mar 2024
Topic Review
Use of Phase Change Materials in Geopolymers
Phase change materials (PCM) were known already in the 1970s (similarly to geopolymers), but their development is observed today. This is related to the possibility of obtaining a stable phase as well as the possibility of optimization of construction materials concerning the construction needs. These materials can change their physical state depending on the ambient temperature. The most common method is liquid-solid conversion. In the area of application of phase change materials in the construction industry, examples of such materials include organic materials (paraffin, fatty acids), inorganic materials, and eutectics. 
  • 55
  • 04 Mar 2024
Topic Review
[M(Salen)] Complexes, Their Polymers, and Composites Based Thereon
The polymers of square–planar complexes of 3d metal (M) atoms with tetradentate N2O2 Schiff base ligands, the so-called salen complexes ([M(Salen)]), are characterized by high redox conductivity, electrochromic behavior, and selective catalytic activity in heterogeneous reactions (including electrocatalysis). An important advantage of these polymers is also their high thermal stability (up to 350 °C) compared with monomer complexes due to their conductive polymer matrix. It is also expected that the synthesis of nanocomposites based on poly-[M(Salen)] and various forms of carbon (mesoporous and activated carbon), including nanostructured ones (carbon nanotubes, graphene, and nanoglobular carbon), will lead to the development of materials with improved energetic, catalytic, and other characteristics. This quality improvement is achieved due to the uniform distribution of the polymer on the surface of the carbon component of the composite material, which has a high specific surface area, electrical conductivity, and mechanical properties (strength, elasticity).
  • 79
  • 18 Feb 2024
Topic Review
Agro-Food Waste Valorization for Sustainable Bio-Based Packaging
The increase in the generation of agro-food processing waste, coupled with uncontrolled disposal and inefficient recovery methods, has raised concerns among society, industries, and the research community. This issue is compounded by the accumulation of conventional synthetic packaging. Owing to their significant environmental and economic impacts, the development of sustainable, biocompatible, and biodegradable materials has become an urgent target. In this context, research efforts have been directed toward developing new packaging materials based on renewable sources, such as agro-food waste, contributing to the circular economy concept.
  • 136
  • 17 Feb 2024
Topic Review
Bio-Based Polymers for Environmentally Friendly Phase Change Materials
Phase change materials (PCMs) have received increasing attention in recent years as they enable the storage of thermal energy in the form of sensible and latent heat, and they are used in advanced technical solutions for the conservation of sustainable and waste energy. Importantly, most of the currently applied PCMs are produced from non-renewable sources and their carbon footprint is associated with some environmental impact. However, novel PCMs can also be designed and fabricated using green materials without or with a slight impact on the environment.
  • 70
  • 07 Feb 2024
Topic Review
Synthesis and Vibrational Properties of Conducting Polymers Composites
From composites based on carbon nanotubes (CNTs) and conducting polymers (CPs) to their biggest competitor, namely composites based on graphene or graphene derivate (GD) and CPs, there are many methods of synthesis that influence the morphology and the functionalization inside the composite, making them valuable candidates for EM both inside DSSCs and in supercapacitors devices. From the combination of CPs with carbon-based materials, such as CNT and graphene or GD, the perfect network is created, and so the charge transfer takes place faster and more easily.
  • 351
  • 26 Jan 2024
Topic Review
Smart Polymer Materials for 4D Printing
Among the innovative materials gaining attention are smart materials, characterized by their ability to undergo changes in properties, such as shape, color, or size, in response to external stimuli like light, heat, humidity, or electric and magnetic fields. This class of programmable materials introduces a unique dimension to 3D printing, referred to as 4D printing. In 4D printing, the same process as 3D printing is used, but the printed objects possess the remarkable capability to dynamically transform their shape or properties over time in response to external stimuli. Some smart polymers exhibit minimal responses over extended periods or possess limited reversibility in their transformations. Despite the need for further advancement in achieving swift and precise transformations in 4D-printed objects, the realm of 4D printing presents novel opportunities across diverse applications such as textiles, aerospace, medical industries, electronics, and robotics.
  • 132
  • 25 Jan 2024
Topic Review
Processing Methods of Low-Clinker Multi-Component Cementitious Materials
The wide use of multi-component cement of highly reduced Portland clinker factor is largely impeded by detrimental changes in the rheological properties of concrete mixes, a substantial reduction in the early rate of cement hardening, and sometimes the insufficient strength of mature concrete. Therefore, major changes are needed in traditional concrete-production technologies if low-clinker cement is to gain wider acceptance. 
  • 125
  • 25 Jan 2024
Topic Review
Three-Dimensional Printing Techniques Applied to DDS Area
Three-dimensional printing (3DP) technologies are characterized as a set of innovative manufacturing techniques that allow for the creation of complex and/or personalized three-dimensional physical objects on the work surface of a 3D printing machine (based on the computer-aided design (CAD) project designs of these parts). Three-dimensional printing techniques are widely used in various areas of knowledge, such as education, engineering, and biomedicine.
  • 56
  • 23 Jan 2024
  • Page
  • of
  • 22