Topic Review
Vaccinia Virus Arrests and Shifts the Cell Cycle
Modulation of the host cell cycle is a common strategy used by viruses to create a pro-replicative environment. To facilitate viral genome replication, vaccinia virus (VACV) has been reported to alter cell cycle regulation and trigger the host cell DNA damage response. However, the cellular factors and viral effectors that mediate these changes remain unknown.
  • 537
  • 04 Mar 2022
Topic Review
Vaccinia Virus - Good Fellow for Vaccine Development
Various vaccinia virus (VACV) strains were applied during the smallpox vaccination campaign to eradicate the variola virus worldwide. After the eradication of smallpox, VACV gained popularity as a viral vector thanks to increasing innovations in genetic engineering and vaccine technology. Some VACV strains have been extensively used to develop vaccine candidates against various diseases. Modified vaccinia virus Ankara (MVA) is a VACV vaccine strain that offers several advantages for the development of recombinant vaccine candidates. In addition to various host-restriction genes, MVA lacks several immunomodulatory genes of which some have proven to be quite efficient in skewing the immune response in an unfavorable way to control infection in the host. Studies to manipulate these genes aim to optimize the immunogenicity and safety of MVA-based viral vector vaccine candidates.
  • 526
  • 16 Feb 2022
Topic Review
Vaccinia
Vaccinia virus (VACV or VV) is a large, complex, enveloped virus belonging to the poxvirus family. It has a linear, double-stranded DNA genome approximately 190 kbp in length, which encodes approximately 250 genes. The dimensions of the virion are roughly 360 × 270 × 250 nm, with a mass of approximately 5–10 fg. The vaccinia virus is the source of the modern smallpox vaccine, which the World Health Organisation used to eradicate smallpox in a global vaccination campaign in 1958–1977. Although smallpox no longer exists in the wild, vaccinia virus is still studied widely by scientists as a tool for gene therapy and genetic engineering. Smallpox had been an endemic human disease that had a 30% fatality rate. In 1796, the British doctor Edward Jenner proved that an infection with the relatively mild cowpox virus would also confer immunity to the deadly smallpox. Jenner referred to cowpox as variolae vaccinae (smallpox of the cow). However, the origins of the smallpox vaccine became murky over time, especially after Louis Pasteur developed laboratory techniques for creating vaccines in the 19th century. Allan Watt Downie demonstrated in 1939 that the modern smallpox vaccine was serologically distinct from cowpox, and vaccinia was subsequently recognized as a separate viral species. Whole-genome sequencing has revealed that vaccinia is most closely related to horsepox, and the cowpox strains found in Great Britain are the least closely related to vaccinia.
  • 577
  • 19 Oct 2022
Topic Review
Vaccines, Microbiota and Immunonutrition
Vaccination represents one of the most crucial achievements in the history of medicine, a turning point in the fight against infectious diseases. A key factor in modulating the immune system, both in its adaptive and innate components, is the microbiota. While microbiota can be modulated in different ways (i.e., antibiotics, probiotics, prebiotics), an effective and somewhat obvious mechanism is via nutrition. The science of nutrients and their therapeutic application is called immunonutrition, and it is increasingly being considered in several conditions.
  • 604
  • 08 Mar 2022
Topic Review
Vaccines in Ovarian Cancer
Ovarian cancer remains the deadliest of all gynecologic malignancies. Our expanding knowledge of ovarian cancer immunology has allowed the development of therapies that generate systemic anti-tumor immune responses. Current immunotherapeutic strategies include immune checkpoint blockade, cellular therapies, and cancer vaccines. Vaccine-based therapies are designed to induce both adaptive and innate immune responses directed against ovarian cancer associated antigens. Tumor-specific effector cells, in particular cytotoxic T cells, are activated to recognize and eliminate ovarian cancer cells. Vaccines for ovarian cancer have been studied in various clinical trials over the last three decades. Despite evidence of vaccine-induced humoral and cellular immune responses, the majority of vaccines have not shown significant anti-tumor efficacy. Recently, improved vaccine development using dendritic cells or synthetic platforms for antigen presentation have shown promising clinical benefits in patients with ovarian cancer. 
  • 518
  • 06 Aug 2021
Topic Review
Vaccines in Gastrointestinal Malignancies
Gastrointestinal (GI) malignancies are some of the most common malignancies and include colorectal, gastric, esophageal, hepatocellular, and pancreatic carcinomas. Overall five-year survival rates for many of these malignancies are low, with many patients presenting with advanced disease. Thus, it is important to continue to investigate and create novel therapeutic interventions to treat these malignancies.
  • 389
  • 30 Jun 2021
Topic Review
Vaccines in Breast Cancer
Breast cancer is a problem for women’s health globally. Early detection techniques come in a variety of forms ranging from local to systemic and from non-invasive to invasive. The treatment of cancer has always been challenging despite the availability of a wide range of therapeutics. This is either due to the variable behaviour and heterogeneity of the proliferating cells and/or the individual’s response towards the treatment applied. However, advancements in cancer biology and scientific technology have changed the course of the cancer treatment approach.
  • 221
  • 14 Jul 2023
Topic Review
Vaccines and Methane Emissions from Ruminants
Ruminants produce significant amounts of methane during their digestive process, making livestock one of the largest sources of anthropogenic greenhouse gasses. Several solutions have been proposed to address this problem, including inoculation of ruminants against microorganisms responsible for methane synthesis in the rumen. 
  • 688
  • 11 Oct 2022
Topic Review
Vaccines Against COVID-19
As a result of the COVID-19 pandemic, various joint efforts have been made to support the creation of vaccines. Different projects have been under development, of which some are in the clinical evaluation stage and others in are in phase III with positive results.
  • 549
  • 29 Mar 2022
Topic Review
Vaccine Technology in Bovine Theileriosis
Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The infection and treatment method (ITM) is currently used in the control and prevention of T. parva infection, and recombinant vaccines are still under evaluation. The use of gene gun immunization against T. parva infection has been recently evaluated.
  • 1.7K
  • 26 Oct 2020
  • Page
  • of
  • 1814
Video Production Service