Topic Review
Virgin Olive Oil
Virgin olive oil (VOO) has unique chemical characteristics among all other vegetable oils which are of paramount importance for human health. VOO constituents are also responsible of its peculiar flavor, a complex sensation due to a combination of aroma, taste, texture, and mouthfeel or trigeminal sensations. VOO flavor depends primarily on the concentration and nature of volatile and phenolic compounds present in olive oil which can change dramatically depending on agronomical and technological factors. Another aspect that can change the flavor perception is linked to the oral process during olive oil tasting. In fact, in this case, some human physiological and matrix effects modulate the flavor release in the mouth.
  • 688
  • 25 Feb 2021
Topic Review
Viral Vectors
Viral vectors can generate high levels of recombinant protein expression providing the basis for modern vaccine development. A large number of different viral vector expression systems have been utilized for targeting viral surface proteins and tumor-associated antigens.
  • 462
  • 23 Apr 2021
Topic Review
Viral Vectored Vaccines
Viral Vectored Vaccines are vaccines that use a viral vector as a carrier to deliver a protein (or antigen) from a pathogen (namely viruses and bacteria) in order to elicit an immune response against this pathogen.  The DNA or RNA sequence for this protein antigen is inserted into the genome of the virus vector. The resultant recombinant virus expresses the necessary components of the viral vector so that functional virus particles can be made to express the foreign protein antigen.  Viral vectored vaccines are classified by the virus vector they use and whether they can reproduce inside cells to produce new virus particles (i.e., are replication competent) or whether they can only enter cells but do not produce new virus particles (i.e., are replication incompetent or single-cycle replication).  Different viral vector backbones can serve different needs for developing preventive and therapeutic vaccines depending on the context and diseases they aim to prevent or treat, respectively.
  • 1.0K
  • 30 Dec 2020
Topic Review
Viral Vector-Based Gene Therapy
Gene therapy is a technique involving the modification of an individual’s genes for treating a particular disease. The key to effective gene therapy is an efficient carrier delivery system. Viral vectors that have been artificially modified to lose their pathogenicity are used widely as a delivery system, with the key advantages of their natural high transduction efficiency and stable expression. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes. Long-term gene therapy involves the administration of a specific genetic material (i.e., DNA or RNA) via a carrier, referred to as a “delivery vector,” which facilitates the entry of the foreign genetic material into target cells. The delivery vectors are of two types: viral vectors and non-viral vectors. The commonly used viral vectors are adeno-associated viruses (AAVs), adenoviruses (Ads), or lentiviruses (LVs).
  • 370
  • 09 May 2023
Topic Review
Viral Transmissibility of SARS-CoV-2
The emergence of coronavirus disease 2019 (COVID-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global health calamity unprecedented in the modern world. The disease spread worldwide, and to date, there have been over 230 million confirmed cases of COVID-19, including approximately 4.7 million deaths. Mutant variants of the virus have raised concerns about additional pandemic waves and threaten to reverse our progress thus far to limit the spread of the virus. 
  • 494
  • 27 Apr 2022
Topic Review
Viral Purification in Vaccine Processing
Viral vectors and viral vaccines are invaluable tools in prevention and treatment of diseases. About 14% of vaccines approved by the FDA involve enveloped viruses, while out of the 15 gene therapy products approved worldwide in 2019, six of them use enveloped viruses, and 39% of gene therapy clinical trials are using enveloped viruses. Enveloped viruses are encased in a lipid bilayer which, in most cases, fuses with the target host cell membrane to infect cells. These enveloped viruses are produced in various systems, including traditional embryonated chicken eggs or more advanced cell culture technologies such as MRC-5 cells, Vero cells and HEK293-derived cell lines. The manufacturing of viral vector and viral vaccine products has always been paved with challenges related to the downstream processing. Purification process unit operations usually start with harvest and clarification, followed by intermediate purification steps, before polishing and formulation steps. Although techniques have greatly improved over the years to generate purer high-quality products and reproducible processes while maintaining or decreasing the cost of goods, regulatory agencies are increasingly stringent regarding product identity and characterization of the end products and level of acceptable impurities as a way to ensure public safety and maintain public trust in this class of medicine.
  • 946
  • 09 Aug 2021
Topic Review
Viral Non-Coding RNAs as Transcriptional Weapons
Viral non-coding RNAs are gaining much value and interest for the potential impact played in host gene regulation, acting as fine tuners of host cellular defense mechanisms. Several viruses are able to produce v-ncRNAs that are frequently expressed at high copy numbers in infected cells. V-ncRNAs are capable of interacting with different host cell pathways leading to the modulation of different biological processes including: 1. regulation of viral and host gene expression; 2. cell survival; 3. viral infection/replication; 4. cell transformation; 5 virus proliferation/propagation . On the other hand, host cells regulate their own ncRNAs expression in order to activate defense mechanisms against virus infection.
  • 473
  • 15 Dec 2022
Topic Review
Viral Interactions with Adaptor-Protein Complexes
Numerous viruses hijack cellular protein trafficking pathways to mediate cell entry or to rearrange membrane structures thereby promoting viral replication and antagonizing the immune response. Adaptor protein complexes (AP), which mediate protein sorting in endocytic and secretory transport pathways, are one of the conserved viral targets. We present here different mechanisms of viral interference with AP complexes and the functional consequences that allow for efficient viral propagation and evasion of host immune defense. The best described examples are interactions of human immunodeficiency virus and human herpesviruses with AP complexes. Several other viruses, like Ebola, Nipah, and SARS-CoV-2, are pointed out as high priority disease-causative agents supporting the need for deeper understanding of virus-AP interplay which can be exploited in the design of novel antiviral therapies
  • 524
  • 13 Jun 2021
Topic Review
Viral Infections in Severe Asthma
Viral respiratory infections are recognized risk factors for the loss of control of allergic asthma and the induction of exacerbations. Severe asthma is more susceptible to virus-induced asthma exacerbations, especially in the presence of high IgE levels.
  • 437
  • 22 May 2021
Topic Review
Viral Infections in HNC
Head and neck cancers (HNC) occur in the upper aerodigestive tract and are among the most common cancers. The etiology of HNC is complex, involving many factors, including excessive tobacco and alcohol consumption. Over the last two decades, oncogenic viruses have also been recognized as an important cause of HNC. Major etiological agents of nasopharynx carcinoma and oropharyngeal carcinoma include Epstein-Barr virus (EBV) and human papillomaviruses (HPVs), both of which are able to interfere with cell cycle control. Additionally, the association of hepatitis C and hepatitis B infection was observed in oral cavity, oropharyngeal, laryngeal, and nasopharyngeal cancers. Overall prognoses depend on anatomic site, stage, and viral status. Current treatment options, including radiotherapy, chemotherapy, targeted therapies and immunotherapies, are distributed in order to improve overall patient prognosis and survival rates. However, the interplay between viral genome sequences and the health, disease, geography, and ethnicity of the host are crucial for understanding the role of viruses and for development of potential personalized treatment and prevention strategies.
  • 880
  • 22 Sep 2021
  • Page
  • of
  • 1814
Video Production Service