Topic Review
Machine Learning for Plant Breeding/Biotechnology
Classical univariate and multivariate statistics are the most common methods used for data analysis in plant breeding and biotechnology studies. Evaluation of genetic diversity, classification of plant genotypes, analysis of yield components, yield stability analysis, assessment of biotic and abiotic stresses, prediction of parental combinations in hybrid breeding programs, and analysis of in vitro-based biotechnological experiments are mainly performed by classical statistical methods. Despite successful applications, these classical statistical methods have low efficiency in analyzing data obtained from plant studies, as the genotype, environment, and their interaction (G × E) result in nondeterministic and nonlinear nature of plant characteristics. Large-scale data flow, including phenomics, metabolomics, genomics, and big data, must be analyzed for efficient interpretation of results affected by G × E. Nonlinear nonparametric machine learning techniques are more efficient than classical statistical models in handling large amounts of complex and nondeterministic information with "multiple-independent variables versus multiple-dependent variables" nature. Neural networks, partial least square regression, random forest, and support vector machines are some of the most fascinating machine learning models that have been widely applied to analyze nonlinear and complex data in both classical plant breeding and in vitro-based biotechnological studies. High interpretive power of machine learning algorithms has made them popular in the analysis of plant complex multifactorial characteristics. The classification of different plant genotypes with morphological and molecular markers, modeling and predicting important quantitative characteristics of plants, the interpretation of complex and nonlinear relationships of plant characteristics, and predicting and optimizing of in vitro breeding methods are the examples of applications of machine learning in conventional plant breeding and in vitro-based biotechnological studies. Precision agriculture is possible through accurate measurement of plant characteristics using imaging techniques and then efficient analysis of reliable extracted data using machine learning algorithms. Perfect interpretation of high-throughput phenotyping data is applicable through coupled machine learning-image processing. This entry shows how nonlinear machine learning algorithms can be used in different branches of classical plant breeding and in vitro-based methods. An idea is provided at the end of the entry that shows how coupled image processing-machine learning (especially deep CNN) could be used to identify the ploidy level of plants. It could be used in laboratories without flowcytometry equipment and/or in plant species without an established chromosome counting protocol.
  • 2.6K
  • 16 Feb 2021
Topic Review
Camel Milk Processing
The camel milk market was limited for a long time by its almost exclusive self-consumption use in nomadic camps. Significant development has been observed for the past two or three decades, including internationally, boosted by its reputation regarding its health effects for regular consumers.  The main change lies in the diversification of the camel dairy products offered to the consumers.
  • 2.6K
  • 06 May 2021
Topic Review
Nitrogen Compounds in the Soil
Soil is an important environment in which nitrogen is transformed. The nitrogen cycle in the soil depends on microorganisms, without them, nitrogen transformation processes cannot occur. They determine the continuity of the circulation of this element in the environment and ensure the renewal of its resources. The presence of microorganisms involved in nitrogen transformation in the soil, their activity and the intensity of the reactions taking place are influenced by many factors, including the type of soil, moisture, oxygenation, pH, vegetation and fertilization. 
  • 2.6K
  • 31 May 2021
Topic Review
Anthocyanidins and Anthocyanins
Anthocyanidins are colored molecules having medium-size and belonging to the class of flavonoids.
  • 2.6K
  • 24 May 2021
Topic Review
Platycodon grandiflorus
Platycodon grandiflorus is a widely used edible, traditional Chinese medicinal herb. It is rich in saponins, flavonoids, phenolic acids, and other compounds. It contains a large number of fatty acids such as linoleic acid (up to 63.24%), a variety of amino acids, vitamins, and multiple essential trace elements.  In this entry, the active chemical components and the health benefits of P. grandiflorus have been reviewed, providing new ideas for the further development of nutraceutical products to prevent and manage chronic diseases.
  • 2.6K
  • 27 Oct 2020
Topic Review
Mitochondrial Metabolism of Fatty Acids
Mitochondria are the powerhouse of the cells, generating up to 90% of the energy within a cell in the form of adenosine triphosphate (ATP). There is a close connection between fatty acid metabolism and mitochondria, involving a considerable number of cellular processes that go well beyond mitochondrial fatty acid metabolism. Fatty acids are essential for ATP and energy production, and are therefore highly relevant in the regulation of energy homeostasis. The processes of β-oxidation, linked to ATP production, and mitochondrial fatty acid biosynthesis (mtFAS) are both localized in the mitochondria. This last pathway, in particular, produces molecules that are used as cellular structural components for post-translational modifications of proteins and in signaling cascades.
  • 2.6K
  • 22 Sep 2021
Biography
Satoshi Kanazawa
Satoshi Kanazawa (born 16 November 1962) is an American-born British evolutionary psychologist and writer.[1] He is currently Reader in Management at the London School of Economics. His work uses evolutionary psychology to analyse social sciences such as sociology, economics, and anthropology.[2] Kanazawa's comments and research on race and intelligence, health and intelligence, multiculturalism
  • 2.6K
  • 27 Dec 2022
Topic Review
Agriculture 5.0 and Remote Sensing
Constant industrial innovation has made it possible that 2021 has been officially marked by the European Commission as the beginning of the era of “Industry 5.0”. In this 5th industrial revolution, RS has the potential of being one of the most important technologies for today’s agriculture. RS sprouted in the 19th century (specifically in 1858) through the use of air balloons for aerial observations. At present, it occupies a central position in precision agriculture (PA) and soil studies. It is also important to mention some of the interchangeable terms most commonly used include “precision farming”, “precision approach”, “remote sensing”, “digital farming”, “information intensive agriculture”, “smart agriculture”, “variable rate technology (VRT)”, “global navigation satellite system (GNSS) agriculture”, “farming by inch”, “site specific crop management”, “digital agriculture”, “agriculture 5.0”, etc. RS is a vast term that covers various technological systems, such as satellites, RPAs, GNSS, geographic information systems (GIS), big data analysis, the Internet of Things (IoT), the Internet of Everything (IoE), cloud computing, wireless sensors technologies (WST), decision support systems (DSS), and autonomous robots.
  • 2.6K
  • 14 Sep 2021
Topic Review
History of Human Movement Studies
Knowing the genesis of ideas is important to understand why we are studying a topic. This topic review is an historical excursus about the origin of movement studies, following the ideas of Aristotle until positivism. The main ideas at the origin of biomechanical studies are historically reviewed, with special focus on the enlightment era. Key figures at the origin of movement studies were presented, together with the main ideas they introduced, most of which are still at the basis of modern research in the field of biomechanics. The entry can be of interest for all professionals working in the field of human and animal movement studies.
  • 2.6K
  • 29 Mar 2022
Topic Review
Hydroxytyrosol in Food Products
Hydroxytyrosol (HT) is an amphipathic functional phenol found in the olive tree, both in its leaves and fruits, in free or bound forms, as well as in olive oil and by-products of olive oil manufacture. It is recognized as safe by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) and has obvious health effect when consumed regularly with the prerequisite to contain at least 5 mg/20 g oil of HT and related compounds. According to the dietary data from the European Union, it is estimated that the mean values of HT consumption in adults is far from the daily recommended intake, which relays the importance of the incorporation of HT in other types of products.
  • 2.6K
  • 23 Dec 2020
  • Page
  • of
  • 1814
Video Production Service