Topic Review
Protein Nanotubes
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. 
  • 963
  • 30 Aug 2021
Topic Review
Bacterial Virulence Factors
There are several levels to influence the expression of eukaryotic genes. A first level of interference is changing of the DNA’s structure on the chromatin level. Epigenetic modulation enables remodelling of the chromatin to transfer heterochromatin into euchromatin allowing transcription or vice versa. In addition, the affinity of promotors and other regulatory DNA sequences for RNA polymerases and transcription factors (TFs) can be influenced by cytosine or adenine methylation. Only a minor portion (fewer than 2%) of genes is transcribed into mRNAs, instead the majority is transferred into so called non-coding RNAs (ncRNAs). Certain long ncRNAs (lncRNAs) are also involved in epigenetic regulations. Epigenetic mechanisms are used for manipulation of gene expression in the course of several cellular processes. Here, we give an overview on the epigenetic control of gene expression by bacterial virulence factors during host cell infection.
  • 962
  • 27 Oct 2020
Topic Review
Rumen
The rumen is the first digester in the digestive system of ruminants, which is located on the left side of the abdominal cavity. Rumen occupying almost the entire left abdominal cavity. In its front part is the rumen vestibule, which connects with the esophagus through the cardia. Rumen microbes anaerobically ferment complex lignocellulose plant materials which cannot be directly utilized by a host, into monomers which are further degraded into different microbial end-products, including volatile fatty acids, hydrogen, carbon dioxide, methane, and other fermentation products necessary for essential metabolic pathways. The complex rumen microbiome network is dominated by bacteria, archaea, protozoa, and anaerobic fungi.
  • 963
  • 23 Feb 2021
Topic Review
LIN28-let-7-ARID3B Pathway
Placental disorders are a major cause of pregnancy loss in humans, and 40%–60% of embryos are lost between fertilization and birth. Successful embryo implantation and placental development requires rapid proliferation, invasion, and migration of trophoblast cells. In recent years, microRNAs (miRNAs) have emerged as key regulators of molecular pathways involved in trophoblast function. A miRNA binds its target mRNA in the 3ʹ-untranslated region (3ʹ-UTR), causing its degradation or translational repression. Lethal-7 (let-7) miRNAs induce cell differentiation and reduce cell proliferation by targeting proliferation-associated genes. The oncoprotein LIN28 represses the biogenesis of mature let-7 miRNAs. Proliferating cells have high LIN28 and low let-7 miRNAs, whereas differentiating cells have low LIN28 and high let-7 miRNAs. In placenta, low LIN28 and high let-7 miRNAs can lead to reduced proliferation of trophoblast cells, resulting in abnormal placental development. In trophoblast cells, let-7 miRNAs reduce the expression of proliferation factors either directly by binding their mRNA in 3ʹ-UTR or indirectly by targeting the -rich interaction domain (ARID)3B complex, a transcription-activating complex comprised of ARID3A, ARID3B, and histone demethylase 4C (KDM4C). In this review, we discuss regulation of trophoblast function by miRNAs, focusing on the role of LIN28-let-7-ARID3B pathway in placental development.
  • 963
  • 27 Oct 2020
Topic Review
SARS-CoV-2 and Coronavirus Disease 2019
Coronaviruses, named for the crown-like spikes on their surface (Latin: corona = crown), are positive-sense RNA viruses that belong to the Coronvirinae subfamily, in the Coronaviridae family of the Nidovirales order. They have four main subgroups—alpha, beta, gamma, and delta—based on their genomic structure. Alpha- and betacoronaviruses infect only mammals, usually causing respiratory symptoms in humans and gastroenteritis in other animals. In December 2019, a cluster of fatal pneumonia cases presented in Wuhan, China.  Based on clinical criteria and available serological and molecular information, the new disease was called coronavirus disease of 2019 (COVID-19), and the novel coronavirus was called SARS Coronavirus-2 (SARS-CoV-2), emphasizing its close relationship to the 2002 SARS virus (SARS-CoV).
  • 962
  • 18 Feb 2022
Topic Review
Lateral Flow Immunoassay
Abundant immunological assays currently exist for detecting pathogens and identifying infected individuals, making detection of diseases at early stages integral to preventing their spread, together with the consequent emergence of global health crises. Lateral flow immunoassay (LFIA) is a test characterized by simplicity, low cost, and quick results. Furthermore, LFIA testing does not need well-trained individuals or laboratory settings.
  • 962
  • 18 Nov 2022
Topic Review
Technological Applications of Huitlacoche
Worldwide, the fungus known as huitlacoche (Ustilago maydis (DC.) Corda) is a phytopathogen of maize plants that causes important economic losses in different countries. Conversely, it is an iconic edible fungus of Mexican culture and cuisine, and it has high commercial value in the domestic market, though recently there has been a growing interest in the international market. Huitlacoche is an excellent source of nutritional compounds such as protein, dietary fiber, fatty acids, minerals, and vitamins. It is also an important source of bioactive compounds with health-enhancing properties. Furthermore, scientific evidence shows that extracts or compounds isolated from huitlacoche have antioxidant, antimicrobial, anti-inflammatory, antimutagenic, antiplatelet, and dopaminergic properties.
  • 964
  • 03 Jul 2023
Topic Review
Kazakhstan’s Fisheries Sector
Kazakhstan, a former Soviet republic that is now independent, lies near the center of arid Eurasia. Its sparse hydrographic network includes a small number of large rivers, lakes, and reservoirs, many ponds and smaller streams, as well as littoral zones bordering the Caspian Sea and the Aral Sea. A diverse fisheries sector, initially based on wild fish capture and later including aquaculture, developed in these waters during the Soviet era, when animal agriculture was unable to meet the protein needs of Soviet citizens. The sector, which was originally centered on the Volga–Caspian basin, was tightly managed by Moscow and benefitted from coordinated investments in research, infrastructure, and human resources, as well as policies to increase the consumption of fish products. Independence in 1991 administered a political and economic shock that disrupted these relationships.
  • 962
  • 07 May 2022
Topic Review
Lycium barbarum Polysaccharides
The fruit of Lycium barbarum L. (goji berry) is used as traditional Chinese medicine, and has the functions of immune regulation, anti-tumor, neuroprotection, anti-diabetes, and anti-fatigue. One of the main bioactive components is L. barbarum polysaccharide (LBP). 
  • 962
  • 25 Apr 2021
Topic Review
Traditional Balsamic Vinegar Processing
The most known and traditional vinegar is the one that is made from wine. For its production, the grape must undergo alcohol fermentation and the posterior oxidation of ethanol to acetic acid. Yeasts and acetic acid bacteria (AAB) carry out the biochemical processes in sequence. The process of wine acetification can be achieved by slow traditional processes (the Orléans or French methods) or by a quick submerged industrial process. High-quality vinegar is usually produced by traditional methods using oak casks, once the wood allows the continuous aeration of the acetic bacteria culture. Sour–sweet vinegar presents a balance of both bitter/sour and sweet flavors. The sourness typically comes from acetic acid, while the sweetness can come from the type of fruit or the amount of sugar present at the end of vinegar production. In general, sour-sweet vinegar has a more complex and nuanced flavor profile compared to regular vinegar, which is often simply sour. One kind of vinegar produced by wine acetification where yeasts and bacteria co-exist and produce savory vinegar is traditional balsamic vinegar (TBV).
  • 962
  • 05 Jul 2023
  • Page
  • of
  • 1814
Video Production Service