Topic Review
The Biological Basis for Antioxidant Therapy
Reactive oxygen species (ROS) are a class of highly reactive free radicals, such as hydroxyl radical (•OH), the superoxide radical (O2•−) and hydrogen peroxide (H2O2). The high intracellular ROS level-induced oxidative stress leads to the upregulation of antioxidant capacity to maintain redox homeostasis by metabolic rerouting or activation of genetic programs.
  • 820
  • 06 Jul 2022
Topic Review
The Biological Activities of Marine Exopolysaccharides
The unique living environment of marine microorganisms endows them with the potential to produce novel compounds with diverse biological activities. Exopolysaccharide (EPS) is a high molecular weight carbohydrate polymer secreted by microorganisms during growth and metabolism. The complex and diverse structures of EPS endow them with unique biological activities and functions. 
  • 1.1K
  • 23 Aug 2022
Topic Review
The Biogenesis of Exosomes
Exosomes, ranging from 30 to 150 nanometers in diameter, emerge as crucial biological nano-scale lipid bilayer vesicles. These vesicles are secreted by various cell types, including dendritic cells, macrophages, B cells, T cells, mesenchymal stem cells, endothelial cells, epithelial cells, and several cancer cells.
  • 285
  • 18 Feb 2024
Topic Review
The Bile Salt Export Pump
The bile salt export pump (BSEP/ABCB11) is responsible for the transport of bile salts from hepatocytes into bile canaliculi. Malfunction of this transporter results in progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2) and intrahepatic cholestasis of pregnancy (ICP). 
  • 743
  • 10 Feb 2021
Topic Review
The BIANCA Biophysical Model
Cancer ion therapy is constantly growing, thanks to its increased precision and, for heavy ions, its increased biological effectiveness (RBE) with respect to conventional photon therapy. The complex dependence of RBE on many factors demands for biophysical modelling. Up to now only the Local Effect Model (LEM), the Microdosimetric Kinetic Model (MKM) and the “mixed-beam” model are used in clinics. In this work the BIANCA biophysical model, after extensive benchmarking in vitro, was applied to develop a database predicting cell survival for different ions, energies and doses. Following interface with the FLUKA Monte Carlo transport code, for the first time BIANCA was benchmarked against in vivo data obtained by C-ion or proton irradiation of the rat spinal cord. The latter is a well-established model for CNS (Central Nervous System) late effects, which in turn are the main dose-limiting factor for head-and-neck tumors. Furthermore, these data have been considered to validate the LEM version applied in clinics. Although further benchmarking is desirable, the agreement between simulations and data suggests that BIANCA can predict RBE for C-ion or proton treatment of head-and-neck tumors. In particular, the agreement with proton data may be relevant if the current assumption of a constant proton RBE of 1.1 is revised. This work provides the bases for future benchmarking against patient data, as well as the development of other databases for specific tumor types and/or normal tissues.
  • 868
  • 02 Nov 2020
Topic Review
The bHLH Transcription Factor Family in Plants
Plant basic helix-loop-helix (bHLH) transcription factors are involved in many physiological processes, and they play important roles in the abiotic stress responses. bHLH transcription factors are among the superfamilies that are commonly found in plants and animals. The conserved bHLH domain contains approximately 60 amino acids (aa), including a basic DNA binding region and two amphipathic α-helices that are separated by a loop region with a variable length. The basic region consists of the first 15 amino acids. Most bHLH proteins have a glutamic acid residue at position 9 (E9), which can interact with the CA nucleotides in the DNA sequence.
  • 628
  • 02 Feb 2023
Topic Review
The Beta-Globin Locus and the Hemoglobin Switching
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype.The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD).  
  • 258
  • 29 Jun 2023
Topic Review
The Benefits of Using Phosphate-Solubilizing Biofertilizers
Chemical phosphatic fertilizers are mainly produced from phosphate rocks, a natural reserve that is depleting rapidly. These chemical phosphatic fertilizers are polluting the environment at an alarming rate as a result of injudicious application to farmlands. On the other hand, phosphate-solubilizing biofertilizers (PSBs) are often considered better alternatives to industrial phosphatic fertilizers in many ways. PSBs are microorganisms capable of solubilizing insoluble forms of phosphate into soluble plant-usable forms. The impacts of phosphatic fertilizers are discussed and making the case for why we should shift to PSBs instead. Phosphatic fertilizers have numerous impacts on the environment (water bodies, land resources, and air), and micro- and macro-organisms, including humans. Chemical fertilizers also tend to be more expensive, especially for farmers in developing countries. On the contrary, PSBs tend to be safer and way more beneficial than their chemical counterparts in that they are environmentally friendly and cheaper options of availing plant-usable phosphorus. PSBs are also involved in other beneficial roles such as the production of phytohormones and secretion of anti-phytopathogenic metabolites. The phytohormones enhance plant growth and the metabolites render crops immunity against phytopathogens. Hence, it is vital to replace chemical phosphatic fertilizers with PSB inoculants both to prevent the irreversible impacts of chemical fertilizers and to take advantage of the numerous benefits of PSBs. 
  • 604
  • 13 Feb 2023
Topic Review
The Bacterial Urban Resistome
Cities that are densely populated are reservoirs of antibiotic resistant genes (ARGs). The overall presence of all resistance genes in a specific environment is defined as a resistome. Spatial proximity of surfaces and different hygienic conditions leads to the transfer of antibiotic resistant bacteria (ARB) within urban environments. Built environments, public transportation, green spaces, and citizens’ behaviors all support persistence and transfer of antimicrobial resistances (AMR). 
  • 630
  • 14 Jun 2022
Topic Review
The B-cell Activating Factor/A Proliferation-Inducing Ligand System
It cannot present MZ B-cell populations without discussing the B-cell Activating Factor/A Proliferation-Inducing Ligand System (BAFF/APRIL) system. Without a doubt, one of the most important molecules for the survival and differentiation of B-cells is BAFF. BAFF, also known as B lymphocyte stimulator (BLyS), is part of the tumor necrosis factor (TNF) family and is encoded by the TNFSF13B gene.
  • 1.5K
  • 18 Apr 2022
  • Page
  • of
  • 1815
ScholarVision Creations