Topic Review
Sonic Hedgehog
Sonic hedgehog is a protein encoded for by the SHH gene. The protein is named after the character Sonic the Hedgehog. This signaling molecule is key in regulating embryonic morphogenesis in all different types of animals. SHH controls organogenesis and the organization of the central nervous system, limbs, digits and many other parts of the body. Sonic hedgehog is a morphogen that patterns the developing embryo using a concentration gradient characterized by the French Flag model. This model has a non-uniform distribution of SHH molecules which governs different cell fates according to concentration. Mutations in this gene can cause holoprosencephaly, a failure of splitting in the cerebral hemispheres, as demonstrated in an experiment using SHH knock-out mice in which the forebrain midline failed to develop and instead only a single fused telencephalic vesicle resulted. Sonic hedgehog still plays a role in differentiation, proliferation, and maintenance of adult tissues. Abnormal activation of SHH signaling in adult tissues has been implicated in various types of cancers including breast, skin, brain, liver, gallbladder and many more.
  • 1.4K
  • 21 Nov 2022
Topic Review
Structure and Function of Microbial Lipases
Lipases or triacylglycerol acyl hydrolases (EC 3.1.1.3) are ubiquitous in all realms of life. In nature, they are mainly characterized by catalyzing the hydrolysis of triglycerides and long-chain partial glycerides, releasing fatty acids, monoglycerides and glycerol. These enzymes constitute a key link in the cellular processes related to the absorption, release and metabolism of fats, since its substrates and derivatives are the most abundant lipids in cells. On the other hand, some lipases have also been attributed functions as defense enzymes or as virulence factors.  The main aspects of the structure–function of microbial lipases, reviewed more extensively in other articles, will be summarized in a general way, but, here, emphasis will be placed on aspects to be discussed in later sections such as their immobilization and applications in reactions of interest in the production of compounds related to APIs.
  • 1.4K
  • 21 Sep 2022
Topic Review
Wheat Gluten and Gluten-Free Alternatives
Gluten is the nitrogen storage protein matrix found in wheat and cereals belonging to the Triticeae tribe, and it is composed of two proteins: gliadin and glutenin.
  • 1.4K
  • 28 Jan 2021
Topic Review
Mycorrhizal Symbiosis of Ericaceous Plants
Ericaceae are a group of plants with biotechnological and commercial importance. These plants establish symbiotic associations with a wide group of mycorrhizal fungi. National and global studies have focused on two of them: arbuscular endomycorrhizae and ectomycorrhizae. The classification of mycorrhizae by type of infection described so far in Ericaceae includes ectomycorrhizae, ectendomycorrhizae, and endomycorrhizae. Ectendomycorrhizas can be of arbutoid, monotropoid, and cavendishioid types; endomycorrhizas are of ericoid and arbuscular types. Of these clades, ectomycorrhizas and ectendomycorrhizas (arbutoid, monotropoid, and cavendishioid) form a multilayer mantle of hyphae around the root; while ericoid, unlike the previous ones, develop their intra- and intercellular structures.
  • 1.4K
  • 30 Sep 2022
Topic Review
Fungi in the Cocoa Production
The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, they can be play a positive role as endophytic promoting plant protection and growth; in addition they could play an important role in the fermentation step providing extracellular enzymes important to the pulp bean degradation. 
  • 1.4K
  • 10 May 2021
Topic Review
Thin Filament Structure and Assembly
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination.
  • 1.4K
  • 18 May 2022
Topic Review
Environmental Factors Affect Parathyroid Hormone and Calcitonin
Calciotropic hormones, parathyroid hormone (PTH) and calcitonin are involved in the regulation of bone mineral metabolism and maintenance of calcium and phosphate homeostasis in the body. Therefore, an understanding of environmental and genetic factors influencing PTH and calcitonin levels is crucial. Genetic factors are estimated to account for 60% of variations in PTH levels.
  • 1.4K
  • 22 Sep 2022
Topic Review
Regulationary Factors of the Peroxisomal β-Oxidation
Beta-oxidation(β-oxidation) is an important metabolic process involving multiple steps by which fatty acid molecules are broken down to produce energy. The very long-chain fatty acids (VLCFAs), a type of fatty acid (FA), are usually highly toxic when free in vivo, and their oxidative metabolism depends on the peroxisomal β-oxidation. Although peroxisomal β-Oxidation attracts less research than mitochondria, the importance of the peroxisomal β-oxidation molecular mechanism can still be spotted from some mechanisms involved in upstream regulation.
  • 1.4K
  • 07 Jul 2022
Topic Review
Heme oxygenase-1
Heme oxygenases (E.C. 1:14:99:33) are vital metabolic enzymes that catalyze the rate-limiting step in the degradation of heme, with the generation of carbon monoxide, biliverdin, and iron.  The inducible form, heme oxygenase-1 (HO-1), is a stress protein, whose expression is responsive to a broad spectrum of adverse chemical and physical stimuli.  HO-1 is known to provide cytoprotection and can exert anti-inflammatory and immunomodulatory effects in tissues, via heme removal. HO-1 is a potential therapeutic target in inflammatory diseases. The end-products of HO-1 activity, including carbon monoxide, may contribute to HO-1 mediated protection. Carbon monoxide delivery by inhalation at low concentration, as well as through application of carbon monoxide releasing molecules (CORMs), has been explored for  therapeutic potential. Recently completed clinical trials have evaluated the safety and feasibility of inhaled CO as a therapy for acute and chronic lung disease,
  • 1.4K
  • 14 Dec 2020
Topic Review
Glucosinolate Biosynthesis
Glucosinolates are amino acid-derived plant-specialized metabolites that are largely found within the members of the family Brassicaceae, which includes vegetables such as broccoli, cabbage, and mustard, as well as the model plant Arabidopsis thaliana (thale cress). The aliphatic glucosinolates are derived from methionine, alanine, leucine, isoleucine, or valine; aromatic glucosinolates are built from phenylalanine or tyrosine; and the indole glucosinolates originate with tryptophan. Each of class of glucosinolate shares a core chemical structure consisting of a β-D-glucosyl residue linked to a (Z)-N-hydroximinosulfate ester through a sulfur and a variable amino acid-derived R group. To date, more than 130 glucosinolate molecules, of which Arabidopsis contains 40 mainly derived from methionine and tryptophan, have been described.
  • 1.4K
  • 11 Oct 2021
  • Page
  • of
  • 1814
Video Production Service