Topic Review
Altered Immune Response in Diabetes
Patients with diabetes often have more invasive infections, which may lead to an increase in morbidity. The human body has incredible defences against millions of bacteria, viruses, fungi, poisons, and parasites. The immune system normally protects against infections, but numerous disorders and deficiencies may impair it. Bacteria may infiltrate through open wounds and cause infections. Natural barriers, including intact skin and mucosal surfaces and the reactive oxygen species, cytokines, and chemokines within their mechanistic organization, help our defence system to fight against pathogens. Due to the immune system’s inability to combat microorganisms, infections are a significant concern for people with diabetes. Numerous research have investigated diabetes-related pathways that decrease pathogen resistance. These processes include the inhibition of cytokine production, abnormalities in phagocytosis, immune cell malfunction, and an inability to destroy microbials.
  • 498
  • 13 Apr 2023
Topic Review
Altered Pathways in Fabry Disease
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A (α-GalA) with consequent lysosomal accumulation of glycosphingolipid in various organs. Enzyme replacement therapy is the cornerstone of the treatment of all Fabry patients, although in the long-term it fails to completely halt the disease’s progression. This suggests on one hand that the adverse outcomes cannot be justified only by the lysosomal accumulation of glycosphingolipids and on the other that additional therapies targeted at specific secondary mechanisms might contribute to halt the progression of cardiac, cerebrovascular, and renal disease that occur in Fabry patients. 
  • 278
  • 15 Mar 2023
Topic Review
Alternate Causes for Pathogenesis of Exfoliation Glaucoma
Exfoliation glaucoma (XFG) is the most recognizable form of secondary open-angle glaucoma associated with a high risk of blindness. This disease is characterized by white flaky granular deposits in the anterior chamber that leads to the elevation of intraocular pressure (IOP) and subsequent glaucomatous optic nerve damage. Conventionally, XFG is known to respond poorly to medical therapy, and surgical intervention is the only management option in most cases.
  • 362
  • 11 Mar 2022
Topic Review
Alternating Hemiplegia of Childhood
Alternating hemiplegia of childhood is a neurological condition characterized by recurrent episodes of temporary paralysis, often affecting one side of the body (hemiplegia). During some episodes, the paralysis alternates from one side of the body to the other or affects both sides at the same time. These episodes begin in infancy or early childhood, usually before 18 months of age, and the paralysis lasts from minutes to days.
  • 339
  • 24 Dec 2020
Topic Review
Alternative Electron Sources for Cytochrome P450s Catalytic Cycle
The functional significance of cytochrome P450s (CYP) enzymes is their ability to catalyze the biotransformation of xenobiotics and endogenous compounds. P450 enzymes catalyze regio- and stereoselective oxidations of C-C and C-H bonds in the presence of oxygen as a cosubstrate. Initiation of cytochrome P450 catalytic cycle needs an electron donor (NADPH, NADH cofactor) in nature or alternative artificial electron donors such as electrodes, peroxides, photo reduction, and construction of enzymatic “galvanic couple”.
  • 186
  • 25 Jun 2023
Topic Review
Alternative Lengthening of Telomeres and Cancer Treatment
Telomeres are non-coding short repeat sequences (TTAGGG in vertebrates) which in combination with shelterin proteins protect the ends of linear chromosomes from degradation, recombination, and end fusions. Human telomeres range from 5–15 kb in length. Human Alternative Lengthening of Telomeres (ALT) cancers are often present as mesenchymal or epithelial origin in subsets of osteosarcomas, liposarcomas, glioblastomas, or astrocytomas.
  • 462
  • 06 Apr 2023
Topic Review
Alternative Management of Fungal Diseases in Plants
Fungal pathogens pose a major threat to food production worldwide. Traditionally, chemical fungicides have been the primary means of controlling these pathogens, but many of these fungicides have recently come under increased scrutiny due to their negative effects on the health of humans, animals, and the environment. Furthermore, the use of chemical fungicides can result in the development of resistance in populations of phytopathogenic fungi. Therefore, new environmentally friendly alternatives that provide adequate levels of disease control are needed to replace chemical fungicides—if not completely, then at least partially. A number of alternatives to conventional chemical fungicides have been developed, including plant defence elicitors (PDEs); biological control agents (fungi, bacteria, and mycoviruses), either alone or as consortia; biochemical fungicides; natural products; RNA interference (RNAi) methods; and resistance breeding. 
  • 128
  • 16 Nov 2023
Topic Review
Alternative Organism Models for Retina Neuroregeneration
Unlike in vitro cell cultures that cannot mimic tissue homeostasis and physiology, 3D retinal organoids are relatively cheap models and have an undeniable complexity rate. However, they are challenging to isolate and maintain long enough to investigate complex processes such as inflammation and neovascularization. These disadvantages are exacerbated considering the retina, which is mainly due to the global complexity of this tissue. Several classic diagnostic techniques could be applied to retinal organ cultures, such as optical coherence tomography, which explores the morphological aspect of the retinal architecture, electroretinograms that record the electrical response of retinal cells, and microelectrode array recording, which stimulates and records the electrical activity of RGC. Several mammalian retinal organ cultures as alternative models are currently available and well established, including those derived from mice, rats, rabbits, cats, dogs, non-human primates, bovines, and pigs. They are excellent samples for the preliminary phase before the in vivo step and for therapy tests, although organ cultures for the study of complex retinal neurodegenerative pathologies such as diabetic retinopathy (DR), retinitis pigmentosa (RP), age-related macular degeneration, and glaucoma are not entirely reproducing the human condition. Although all the events occurring during the various steps of retinal neurodegenerative diseases, including the clinical progression, are not fully mimicked by a single animal, preclinical in vivo models provide important information on the molecular and cellular mechanisms at the basis of the neuronal impairment. Thus, multiple organisms, including non-mammalian ones, are crucial for validating the mechanisms involved in retinal pathologies and developing new therapeutic options.
  • 264
  • 28 Sep 2022
Topic Review
Alternative Oxidase
The interaction of the alternative oxidase (AOX) pathway with nutrient metabolism is important for understanding how respiration modulates ATP synthesis and carbon economy in plants under nutrient deficiency. Although AOX activity reduces the energy yield of respiration, this enzymatic activity is upregulated under stress conditions to maintain the functioning of primary metabolism. The in vivo metabolic regulation of AOX activity by phosphorus (P) and nitrogen (N) and during plant symbioses with Arbuscular mycorrhizal fungi (AMF) and Rhizobium bacteria is still not fully understood. We highlight several findings and open questions concerning the in vivo regulation of AOX activity and its impact on plant metabolism during P deficiency and symbiosis with AMF. We also highlight the need for the identification of which metabolic regulatory factors of AOX activity are related to N availability and nitrogen‐fixing legume‐rhizobia symbiosis in order to improve our understanding of N assimilation and biological nitrogen fixation.
  • 1.4K
  • 27 Oct 2020
Topic Review
Alternative Pesticide Residue Detection Methods
Pesticides have been extensively used in agriculture to protect crops and enhance their yields, indicating the need to monitor for their toxic residues in foodstuff. To achieve that, chromatographic methods coupled to mass spectrometry is the common analytical approach, combining low limits of detection, wide linear ranges, and high accuracy. However, these methods are also quite expensive, time-consuming, and require highly skilled personnel, indicating the need to seek for alternatives providing simple, low-cost, rapid, and on-site results. In this study, we critically review the available screening methods for pesticide residues on the basis of optical detection during the period 2016–2020. Optical biosensors are commonly miniaturized analytical platforms introducing the point-of-care (POC) era in the field. Various optical detection principles have been utilized, namely, colorimetry, fluorescence (FL), surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). Nanomaterials can significantly enhance optical detection performance and handheld platforms, for example, handheld SERS devices can revolutionize testing. All in all, despite being in an early stage facing several challenges, i.e., long sample preparation protocols, such POC diagnostics pave a new road into the food safety field in which analysis cost will be reduced and a more intensive testing will be achieved.
  • 630
  • 20 Apr 2021
  • Page
  • of
  • 1814
Video Production Service