Topic Review
Leonardo da Vinci’s Animal Anatomy
Leonardo da Vinci was the personification of the ideal Renaissance man. Among his many skills, including human anatomical studies, he was also interested in animal anatomy. This comparative study focused on two species: bears and horses. Based on anatomical details (ankle and toes –tarsus and digits–), his drawings of "bear's foot" series depict the right leg and foot, instead of the previously reported left hindlimb. Besides, on the first drawing of this series there is a silhouette of a dog/wolf forearm (antebrachium, carpus and manus) not formerly reported. Relative to Leonardo's horse anatomical drawings, "The viscera of a horse" representing the horse trunk, and based on its blood vessel disposition, we concluded that it is more compatible with the dog anatomy than with the horse structure. Other drawings of comparative anatomy of human and horse pelvic limbs were also explored in detail regarding motion in the full paper. 
  • 2.1K
  • 15 Mar 2021
Topic Review
Evolution of Domestic Goats
Goat evolution is the process by which domestic goats came to exist through evolution by natural selection. Wild goats — medium-sized mammals which are found in noticeably harsh environments, particularly forests and mountains, in the Middle East and Central Asia — were one of the first species domesticated by modern humans, with the date of domestication generally considered to be 8,000 BCE. Goats are part of the family Bovidae, a broad and populous group which includes a variety of ruminants such as bison, cows and sheep. Bovids all share many traits, such as hooves and a herbivorous diet and all males, along with many females, have horns. Bovids began to diverge from deer and giraffids during the early Miocene epoch. The subfamily Caprinae, which includes goats, ibex and sheep, are considered to have diverged from the rest of Bovidae as early as the late Miocene, with the group reaching its greatest diversity in the ice ages. The tribe Caprini would subsequently develop from Caprids who arrived in the mountainous areas of Eurasia and split into goats and sheep in response to a further geographic separation. The ancestors of sheep remained in the foothills and the ancestors of goats went to higher altitudes. This divergence resulted in the adaption of the ancestors of goats to a mountainous environment, producing many of the traits considered peculiar to the species. During the ice ages a genus called Capri evolved which would then diverge into the modern goat species, along with several species of ibex. It is commonly held that the earliest domestication was of the bezoar ibex in the Zagros Mountains. These earliest domesticated goats were used to produce meat and milk for Neolithic farmers, along with providing many of the materials required to built residences and tools. Following the domestication of goats over 300 breeds have been established for a variety of purposes, including for the maximation of milk production and for meat. Domestication and the selective breeding which resulted had a significant effect on the direction of goat evolution, with goats developing behaviour which is considered to have been influenced by consistent proximity to humans. Selective breeding also significantly increased the physical diversity of modern goats, producing characteristics not seen in wild goats.
  • 2.1K
  • 08 Oct 2023
Topic Review
Seafood Spoilage
The term “seafood” includes (i) free-swimming, pelagic and freshwater fish, (ii) crustaceans, (iii) mollusks and (iv) the respective aquacultured species.
  • 2.1K
  • 19 Feb 2021
Topic Review
Translation
In molecular biology and genetics, translation is the process in which ribosomes in the cytoplasm or endoplasmic reticulum synthesize proteins after the process of transcription of DNA to RNA in the cell's nucleus. The entire process is called gene expression. In translation, messenger RNA (mRNA) is decoded in a ribosome, outside the nucleus, to produce a specific amino acid chain, or polypeptide. The polypeptide later folds into an active protein and performs its functions in the cell. The ribosome facilitates decoding by inducing the binding of complementary tRNA anticodon sequences to mRNA codons. The tRNAs carry specific amino acids that are chained together into a polypeptide as the mRNA passes through and is "read" by the ribosome. Translation proceeds in three phases: In prokaryotes (bacteria and archaea), translation occurs in the cytosol, where the large and small subunits of the ribosome bind to the mRNA. In eukaryotes, translation occurs in the cytoplasm or across the membrane of the endoplasmic reticulum in a process called co-translational translocation. In co-translational translocation, the entire ribosome/mRNA complex binds to the outer membrane of the rough endoplasmic reticulum (ER) and the new protein is synthesized and released into the ER; the newly created polypeptide can be stored inside the ER for future vesicle transport and secretion outside the cell, or immediately secreted. Many types of transcribed RNA, such as transfer RNA, ribosomal RNA, and small nuclear RNA, do not undergo translation into proteins. A number of antibiotics act by inhibiting translation. These include anisomycin, cycloheximide, chloramphenicol, tetracycline, streptomycin, erythromycin, and puromycin. Prokaryotic ribosomes have a different structure from that of eukaryotic ribosomes, and thus antibiotics can specifically target bacterial infections without any harm to a eukaryotic host's cells.
  • 2.1K
  • 14 Nov 2022
Topic Review
Coenzyme Q10
Coenzyme Q10 (CoQ10) has a number of important roles in the cell that are required for optimal functioning of the immune system. These include its essential role as an electron carrier in the mitochondrial respiratory chain, enabling the process of oxidative phosphorylation to occur with the concomitant production of ATP, together with its role as a potential lipid-soluble antioxidant, protecting the cell against free radical-induced oxidation. Furthermore, CoQ10 has also been reported to have an anti-inflammatory role via its ability to repress inflammatory gene expression. Recently, CoQ10 has also been reported to play an important function within the lysosome, an organelle central to the immune response.
  • 2.1K
  • 27 May 2021
Topic Review
Plant Nutrition under Climate Change
The climate is one of the key elements impacting several cycles connected to soil and plant systems, as well as plant production, soil quality, and environmental quality. Due to heightened human activity, the rate of CO2 is rising in the atmosphere. Changing climatic conditions (such as temperature, CO2, and precipitation) influence plant nutrition in a range of ways, comprising mineralization, decomposition, leaching, and losing nutrients in the soil.
  • 2.1K
  • 26 Jan 2022
Topic Review
Exercise influence on calcium-phosphorous metabolism
Exercise perturbs homeostasis, alters the levels of circulating mediators and hormones, and increases the demand by skeletal muscles and other vital organs for energy substrates. Exercise also affects bone and mineral metabolism, particularly calcium and phosphate, both of which are essential for muscle contraction, neuromuscular signaling, biosynthesis of adenosine triphosphate (ATP), and other energy substrates. Parathyroid hormone (PTH) is involved in the regulation of calcium and phosphate homeostasis. Understanding the e ects of exercise on PTH secretion is fundamental for appreciating how the body adapts to exercise.
  • 2.1K
  • 26 Aug 2020
Topic Review
Granular Organic Fertilizers
Granular organic fertilizers' production has recently become more popular, with the main aim of converting high-moisture organic matter, such as manure, manure mixtures, meat and bone waste or other organic matter, into pellets that are convenient to spread in the field. The pellets are usually produced with the diameter of 4 or 6 mm so that they can be easily spread with mineral or organic fertilizer spreaders. Once in the soil, organic fertilizer pellets become wet, decompose and release nutrients.
  • 2.1K
  • 11 Sep 2021
Topic Review
Analysis of Minimum Inhibitory Concentrations
In response to the threat presented by AMR, it is critically important to find methods for effectively interpreting minimum inhibitory concentration (MIC) tests. A wide array of techniques for analysis of MIC data exist, which require different ways of modifying the MIC data for use as the dependent variable in regression and analysis. For use as the outcome in logistic regression, MIC data is categorized using clinical breakpoints and epidemiological cutoff values (ECOFF). Clinical breakpoints classify isolates as susceptible (S), resistant (R), or an intermediate category based on expected clinical outcomes of treatment with a specific antimicrobial. The ECOFF classifies organisms as wild type (WT) or non-wild type (non-WT)  based on the absence or presence of phenotypically-detectable acquired resistance mechanisms to the specific antimicrobial. Dichotomization of MIC data results in information loss, as only changes in the proportions of WT/non-WT or S/R are observed in dichotomized data. As a result, changes in MIC distributions that do not cross the threshold may be unobserved using approaches with dichotomized outcomes. Other modeling approaches for MIC data may attempt to avoid information loss by not dichotomizing the outcome when using regression to analyze MIC data.
  • 2.1K
  • 02 Sep 2020
Topic Review
Pharmacological Actions of Quercetin in Diabetes
Quercetin is a flavonoid, present in various natural sources, which has demonstrated in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6, and TNF-α.
  • 2.1K
  • 09 Aug 2022
  • Page
  • of
  • 1814
Video Production Service