Topic Review
Allen's Olingo
Allen's Olingo (Bassaricyon alleni) is a captivating arboreal mammal, belonging to the Procyonidae family and native to Central America. Renowned for its distinctive appearance and nocturnal habits, this small carnivore plays a crucial role in the diverse ecosystems it inhabits.
  • 143
  • 04 Feb 2024
Topic Review
Allergenic and Anti-Allergenic Antibodies in Food Allergy
Food allergies are a growing public health concern worldwide, especially in children and young adults. Allergen-specific IgE plays a central role in the pathogenesis of food allergies, but their titers poorly correlate with allergy development. Host immune systems yield allergen-specific immunoglobulin (Ig)A, IgE and IgG subclasses with low or high affinities and differential Fc N-glycosylation patterns that can affect the allergic reaction to food in multiple ways. High-affinity IgE is required to induce strong mast cell activation eventually leading to allergic anaphylaxis, while low-affinity IgE can even inhibit the development of clinically relevant allergic symptoms. IgA and IgG antibodies can inhibit IgE-mediated mast cell activation through various mechanisms, thereby protecting IgE-positive individuals from allergy development. The production of IgE and IgG with differential allergenic potential seems to be affected by the signaling strength of individual B cell receptors, and by cytokines from T cells. 
  • 178
  • 19 Dec 2023
Topic Review
Allergic Asthma
Asthma is a breathing disorder characterized by inflammation of the airways and recurrent episodes of breathing difficulty. These episodes, sometimes referred to as asthma attacks, are triggered by irritation of the inflamed airways. In allergic asthma, the attacks occur when substances known as allergens are inhaled, causing an allergic reaction. Allergens are harmless substances that the body's immune system mistakenly reacts to as though they are harmful. Common allergens include pollen, dust, animal dander, and mold. The immune response leads to the symptoms of asthma. Allergic asthma is the most common form of the disorder.
  • 404
  • 24 Dec 2020
Topic Review
Allergy and Allergic Diseases Prevention
Prophylactic interventions for the prevention of allergic diseases differ depending on the timing and the stage in the ontogeny of the processes leading from sensitisation to clinical symptoms.  They can be divided into primary, secondary and tertiary prophylaxis.
  • 1.5K
  • 25 Apr 2021
Topic Review
Allergy to Fungi in Veterinary Medicine
The fungal kingdom comprises ubiquitous forms of life with 1.5 billion years, mostly phytopathogenic and commensals for humans and animals. However, in the presence of immune disorders, fungi may cause disease by intoxicating, infecting or sensitizing with allergy. Species from the genera Alternaria, Aspergillus and Malassezia, as well as dermatophytes from the genera Microsporum, Trichophyton and Epidermophyton, are the most commonly implicated in veterinary medicine. 
  • 668
  • 18 Mar 2022
Topic Review
Allogeneic CAR-T Therapy Technologies
Chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish “off-the-shelf” allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development.
  • 139
  • 18 Jan 2024
Topic Review
Allograft Inflammatory Factor-1 in Metazoans
Allograft inflammatory factor-1 (AIF-1) is a calcium-binding scaffold/adaptor protein often associated with inflammatory diseases. Originally cloned from active macrophages in humans and rats, this gene has also been identified in other vertebrates and in several invertebrate species. Among metazoans, AIF-1 protein sequences remain relatively highly conserved. Generally, the highest expression levels of AIF-1 are observed in immunocytes, suggesting that it plays a key role in immunity. In mammals, the expression of AIF-1 has been reported in different cell types such as activated macrophages, microglial cells, and dendritic cells. Its main immunomodulatory role during the inflammatory response has been highlighted. Among invertebrates, AIF-1 is involved in innate immunity, being in many cases upregulated in response to biotic and physical challenges. AIF-1 transcripts result ubiquitously expressed in all examined tissues from invertebrates, suggesting its participation in a variety of biological processes, but its role remains largely unknown. 
  • 369
  • 17 May 2021
Topic Review
Allosteric Drug Discovery
Understanding molecular mechanisms underlying the complexity of allosteric regulation in proteins has attracted considerable attention in drug discovery due to the benefits and versatility of allosteric modulators in providing desirable selectivity against protein targets while minimizing toxicity and other side effects. The proliferation of novel computational approaches for predicting ligand–protein interactions and binding using dynamic and network-centric perspectives has led to new insights into allosteric mechanisms and facilitated computer-based discovery of allosteric drugs. Although no absolute method of experimental and in silico allosteric drug/site discovery exists, current methods are still being improved. As such, the critical analysis and integration of established approaches into robust, reproducible, and customizable computational pipelines with experimental feedback could make allosteric drug discovery more efficient and reliable. In this article, we review computational approaches for allosteric drug discovery and discuss how these tools can be utilized to develop consensus workflows for in silico identification of allosteric sites and modulators with some applications to pathogen resistance and precision medicine. The emerging realization that allosteric modulators can exploit distinct regulatory mechanisms and can provide access to targeted modulation of protein activities could open opportunities for probing biological processes and in silico design of drug combinations with improved therapeutic indices and a broad range of activities.
  • 884
  • 26 Sep 2021
Topic Review
Allosterism in the PDZ Family
Allosterism is a phenomenon where communication exists within a biological macromolecule between the ligand-binding site and a distal region. Dynamic allosterism allows the propagation of signal throughout a protein. The PDZ (PSD-95/Dlg1/ZO-1) family has been named as a classic example of dynamic allostery in small modular domains. While the PDZ family consists of more than 200 domains, previous efforts have primarily focused on a few well-studied PDZ domains, including PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ. Taken together, experimental and computational studies have identified regions of these domains that are dynamically coupled to ligand binding. These regions include the αA helix, the αB lower-loop, and the αC helix. In this review, we summarize the specific residues on the αA helix, the αB lower-loop, and the αC helix of PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ that have been identified as participants in dynamic allostery by either experimental or computational approaches. 
  • 297
  • 21 Feb 2022
Topic Review
Allotetraploid Cotton
Allotetraploid cotton (Gossypium hirsutum and Gossypium barbadense) are cultivated worldwide for its white fiber. Since centuries, conventional breeding approaches increase cotton yield at the cost of extensive erosion of natural genetic variability. Sea Island cotton (G. barbadense) is known for its superior fiber quality, but show poor adaptability as compared to Upland cotton. Hence, there is a dire need to improve the current germplasm resources of Sea Island cotton to develop diverse breeding lines with improved adaptability and excellent agronomic and economic traits. Ethyl methanesulfonate (EMS) is an excellent mutagenic agent that induces genome-wide point mutations to activate the mutagenic potential of plants. In current study, we determined the optimal EMS experimental procedure suitable for construction of cotton mutant library. At M6 generation, mutant library comprised of lines with distinguished phenotypes of the plant architecture, leaf, flower, boll and fiber. Genome wide analysis of SNP distribution and density in yellow leaf mutants reflected the better quality of mutant library. Our mutant collection will serve as the valuable resource for basic research on cotton functional genomics, as well as cotton breeding.
  • 864
  • 09 Nov 2020
  • Page
  • of
  • 1814
Video Production Service