Topic Review
Adipocyte Browning
The role of brown adipocytes in thermogenesis is a potential target for preventing obesity. Obesity results from adipocyte hypertrophy and hyperplasia caused by a severe energy imbalance between food intake and energy expenditure. To achieve both safety and multifunctionality, many in vitro and in vivo studies have focused on finding food extracts or natural products for stimulating adipocyte browning (elevating beige adipocyte differentiation and functions) and combating obesity and related metabolic diseases.
  • 625
  • 26 Apr 2021
Topic Review
Adipocyte–Macrophage Relationship in Cancer
Obesity is a major public health concern associated with chronic low-grade systemic inflammation. Moreover, obesity is considered one of the major risk factors for the development of several chronic diseases, such as cancer. Researchers describe here, how adipose tissue dysfunction, particularly alterations in adipocytes and macrophages, participate in such processes.
  • 383
  • 09 Mar 2023
Topic Review
Adipocytokines Produced by Adipose Tissue
The alterations of adipocyte-derived signal mediators strongly influence the regulation of inflammation, resulting in chronic low-grade inflammation.
  • 953
  • 23 Jun 2021
Topic Review
Adipogenesis
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This entry focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
  • 1.6K
  • 16 Nov 2020
Topic Review
Adipogenic Transcription Factors
Adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), C/EBP beta (C/EBPβ) and peroxisome proliferator-associated receptor gamma (PPARγ) are also expressed by osteoclastogenic cells. However, in contrast to MSCs, activation of these adipogenic transcription factors in HSCs promotes the differentiation of osteoclast precursors into mature osteoclasts. Herein, we discuss the molecular mechanisms that link adipogenic transcription factors to the osteoclast differentiation program.
  • 1.0K
  • 28 Oct 2020
Topic Review
Adipokines
Adipokines are adipose tissue-derived factors not only playing an important role in metabolism but also influencing other central processes of the body, such as inflammation.
  • 624
  • 03 Mar 2021
Topic Review
Adipokines in Non-Alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) has become the major cause of chronic hepatic illness and the leading indication for liver transplantation in the future decades. NAFLD is also commonly associated with other high-incident non-communicable diseases, such as cardiovascular complications, type 2 diabetes, and chronic kidney disease. Aggravating the socio-economic impact of this complex pathology, routinely feasible diagnostic methodologies and effective drugs for NAFLD management are unavailable. The pathophysiology of NAFLD, defined as metabolic associated fatty liver disease (MAFLD), is correlated with abnormal adipose tissue–liver axis communication because obesity-associated white adipose tissue (WAT) inflammation and metabolic dysfunction prompt hepatic insulin resistance (IR), lipid accumulation (steatosis), non-alcoholic steatohepatitis (NASH), and fibrosis. Accumulating evidence links adipokines, cytokine-like hormones secreted by adipose tissue that have immunometabolic activity, with NAFLD pathogenesis and progression.
  • 400
  • 16 Sep 2022
Topic Review
Adipokines in the Control of Pituitary Functions
The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus–pituitary–target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland.
  • 123
  • 01 Feb 2024
Topic Review
Adipokines, Myokines, and Hepatokines
Adipose, skeletal, and hepatic muscle tissues are the main endocrine organs that produce adipokines, myokines, and hepatokines. These biomarkers can be harmful or beneficial to an organism and still perform crosstalk, acting through the endocrine, paracrine, and autocrine pathways. Far beyond understanding the actions of each biomarker alone, it is important to underline that these cytokines act together in the body, resulting in a complex network of actions in different tissues, which may have beneficial or non-beneficial effects on the genesis of various physiological disorders and their respective outcomes, such as type 2 diabetes mellitus (DM2), obesity, metabolic syndrome, and cardiovascular diseases (CVD). Overweight individuals secrete more pro-inflammatory adipokines than those of a healthy weight, leading to an impaired immune response and greater susceptibility to inflammatory and infectious diseases. Myostatin is elevated in pro-inflammatory environments, sharing space with pro-inflammatory organokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), resistin, and chemerin. Fibroblast growth factor FGF21 acts as a beta-oxidation regulator and decreases lipogenesis in the liver. The crosstalk mentioned above can interfere with homeostatic disorders and can play a role as a potential therapeutic target that can assist in the methods of diagnosing metabolic syndrome and CVD.
  • 835
  • 25 Mar 2021
Topic Review
Adiponectin and Its Receptors Physiological Roles
Tthere has been a captivating focus of interest in elucidating the intricate crosstalk between adiponectin (APN), a versatile fat-associated adipokine and ocular pathologies. Unveiling the intricate relationship between adipocytokine APN and its receptors (AdipoRs) with aging eye disorders has emerged as a fascinating frontier in medical research. 
  • 133
  • 06 Dec 2023
  • Page
  • of
  • 1814
Video Production Service