Topic Review
GRKs
G protein-coupled receptor (GPCR) kinases (GRKs) play an important role in the regulation of signaling of GPCRs that bind neurotransmitters. The canonical model of GPCR desensitization posits that GRKs phosphorylate ligand-activated GPCRs, and this phosphorylation prepares receptors for the high-affinity binding of arrestin proteins. Arrestin binding prevents further G protein coupling, promotes receptor internalization, and initiates and/or facilitates specific branches of signaling. Existing data suggest that the role of GPCR phosphorylation by GRKs is distinct in different receptors. The relationship between G protein- and arrestin-mediated signaling on the one hand, and therapeutic and side effects of drugs on the other, is more complex than is widely believed. Also, the relationship between rapid (minutes to hours) GRK/arrestin-mediated regulation and long-term (days to weeks) neural plasticity remains to be elucidated. 
  • 1.2K
  • 19 Jan 2021
Topic Review
Mast Cells
Mast Cells (MCs), from the German mast meaning well-fed, were first described by Paul Ehrlich in 1878 based on the unique color-changing granules within these cells. In fact, MCs are easily recognizable with characteristic toluidine blue-positive granules in the cytoplasm. Their granules contain several elements, such as histamine, serotonin, heparin, proteases (chymase, tryptase, carboxypeptidase), cytokines and other growth factors (vascular endothelial growth factor, VEGF; fibroblast growth factor-2, FGF-2). Tryptases and chymases are considered MC-specific proteases, but the granules also contain some non-specific enzymes, such as metalloproteinase-9.
  • 1.2K
  • 28 Sep 2021
Topic Review
Nosema locustae
Nosema locustae (Synonyms: Paranosema locustae, Antonospora locustae), a protozoan pathogen of locusts and grasshoppers, was developed as a biological control agent as early as the 1980s. 
  • 1.2K
  • 13 Apr 2021
Topic Review
Lamin-A/C expression in immune cells
Nuclear envelope lamin A/C type-V intermediate filaments are a major constituent of the mammalian nuclear lamina, a dense fibrous protein meshwork located in the nuclear interior. Lamin A/C proteins control nuclear mechanics and structure and modify cellular signaling, gene transcription, epigenetic regulation, cell cycle progression, cell differentiation, and cell migration. The immune system is constituted by the innate and adaptive immunity. Innate immune response is mediated by myeloid cells such as neutrophils, macrophages, and dendritic cells. These cells produce a rapid and nonspecific response through phagocytosis, cytokine production, and complement activation, as well as activating adaptive immunity. Specific adaptive immune response is provoked by antigen presentation by antigen presenting cells (APCs) and the cytokine milieu, and is mainly mediated by the cellular functions of T cells and the production of antibodies by B cells. Unlike most cell types, immune cells regulate their lamin A/C protein expression relatively rapidly to exert their functions, with expression increasing in macrophages, reducing in neutrophils, and increasing transiently in T cells. In this article, it is discussed and summarized studies that have addressed the regulation of the expression of lamin A/C in cells of the innate and adaptive immune system.
  • 1.2K
  • 27 Oct 2020
Topic Review
Vermicomposting on Greenhouse Gas Emission
The implementation of cutting-edge agricultural practices provides tools and techniques to drive climate-smart agriculture, reduce carbon emissions, and lower the carbon footprint. The alteration of climate conditions due to human activities poses a serious threat to the global agricultural systems. Greenhouse gas emissions (GHG) from organic waste management need urgent attention to optimize conventional composting strategies for organic wastes.
  • 1.2K
  • 21 Sep 2022
Topic Review
Downy Mildew Detection and Diagnostics
Downy mildews affect important crops and cause severe losses in production worldwide. Accurate identification and monitoring of these plant pathogens, especially at early stages of the disease, is fundamental in achieving effective disease control. The rapid development of molecular methods for diagnosis has provided more specific, fast, reliable, sensitive, and portable alternatives for plant pathogen detection and quantification than traditional approaches. 
  • 1.2K
  • 11 Jun 2021
Topic Review
Symmetric and Asymmetric Synapses Driving Neurodegenerative Disorders
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease.
  • 1.2K
  • 10 Dec 2021
Topic Review
Development of CDK4/6 Inhibitors
CDKs, a family of serine/threonine kinases, regulate cell cycle progression into the four distinct phases G1, S (DNA synthesis), G2 and M, and are crucially involved in the regulation of cell division and proliferation.
  • 1.2K
  • 23 Apr 2021
Topic Review
Bioactive Components of Eucalyptus globulus Labill.
E. globulus belongs to the family of Myrtaceae; an evergreen broadleaf tree, with a straight trunk, indigenous to Australia, the genus Eucalyptus comprises of more than 700 species. It is known as “the blue gum” or Tasmanian blue gum. E. globulus Labill. has precious bioactive constituents, antioxidants, antimicrobials, and phytoremediation, and herbicidal activities, which will pave the way to the development of new pharmaceuticals and agrochemicals, as well as food preservatives. They may also provide potential commercial applications to counteract the limitations of synthetic antioxidants.
  • 1.2K
  • 13 Dec 2021
Topic Review
Sulfur in Plant Defense
Sulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide. SDCs play versatile roles both in pathogen perception and initiating signal transduction pathways that are interconnected with various defense processes regulated by plant hormones (salicylic acid, jasmonic acid and ethylene) and reactive oxygen species (ROS). Importantly, ROS-mediated reversible oxidation of cysteine residues on plant proteins have profound effects on protein functions like signal transduction of plant defense responses during pathogen infections. Indeed, the multifaceted plant defense responses initiated by SDCs should provide novel tools for plant breeding to endow crops with efficient defense responses to invading pathogens.
  • 1.2K
  • 17 Dec 2020
  • Page
  • of
  • 1815
ScholarVision Creations