Topic Review
Anti-diabetic Bioactive Peptides
Bioactive peptides released from the enzymatic hydrolysis of food proteins are currently a trending topic in the scientific community. Their potential as antidiabetic agents, by regulating the glycemic index, and thus to be employed in food formulation, is one of the most important functions of these peptides.  The future applicability that these molecules have due to their biological potential as functional ingredients makes them an important field of research, which could help the world population avoid suffering from several diseases, such as diabetes.
  • 1.7K
  • 31 Jul 2020
Topic Review
GADD45A
The growth arrest and DNA damage-inducible 45 alpha (GADD45A) gene encodes a 165 aa protein localized in the nucleus, whose level is highest in the G1 phase of the cell cycle, with a substantial reduction in S. The involvement of GADD45A in the cell cycle regulation and interaction with other proteins underline its function in the cellular DNA damage response and maintaining genomic stability, which, in turn, determines its high potential in cancer transformation. The protective role of GADD45A in DNA damage-induced tumorigenesis is the main biological function of this protein, but exact mechanism of it is not known. Emerging evidence suggests that GADD45A may be important in breast cancer and several molecular pathways were reported to underline this importance, including Ras, mitogen-activated protein kinase 8 (MAPK8), JNK (c-Jun N-terminal kinase) and p38. GADD45A may play a tumor-suppressor role by induction of senescence and apoptosis in cancer cells. However, it was also shown that GADD45A may promote tumorigenesis via the GSK3 β (glycogen synthase kinase 3 beta)/β-catenin signaling. Therefore, GADD45A may function as either a tumor promotor or suppressor, depending on the kind of oncogenic stress, and these two functions are mediated by different signaling pathways.
  • 1.7K
  • 01 Nov 2020
Topic Review
ARDS
Acute respiratory distress syndrome (ARDS) is a serious clinical illness, defined by severe hypoxemic respiratory failure, which continues to be associated with significant morbidity, mortality, and healthcare resource utilization. 
  • 1.7K
  • 16 Dec 2020
Biography
Ziauddin Sardar
Ziauddin Sardar (Urdu: ضیاء الدین سردار‎; born 31 October 1951) is a British-Pakistani scholar, award-winning writer, cultural critic and public intellectual who specialises in Muslim thought, the future of Islam, futurology and science and cultural relations. The author of more than 50 books,[1] Prospect magazine has named him as one of Britain's top 100 public intellectuals and
  • 1.7K
  • 11 Nov 2022
Topic Review
Melanogenesis in Immune Systems
Melanocytes and melanin play a wide range of roles such as adsorption of metals, thermoregulation, and protection from foreign enemies by camouflage.
  • 1.7K
  • 14 Jan 2021
Topic Review
Non-Coding RNAs in Plants
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation.
  • 1.7K
  • 15 Apr 2022
Topic Review
Glucose Uptake by Skeletal Muscle
Skeletal muscle is the primary tissue for maintaining glucose homeostasis through glucose uptake via insulin-dependent and -independent mechanisms. Skeletal muscle is also responsive to exercise-meditated glucose transport, and as such, exercise is a cornerstone for glucose management in people with type 2 diabetes.
  • 1.7K
  • 07 Mar 2022
Topic Review
Genome Editing in Bacteria
Genome editing in bacteria encompasses a wide array of laborious and multi-step methods such as suicide plasmids. The discovery and applications of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas based technologies have revolutionized genome editing in eukaryotic organisms due to its simplicity and programmability. 
  • 1.7K
  • 26 May 2021
Topic Review
Biofluids: Storage of Biomarkers
In recent years, there has been an increase in knowledge of cancer, accompanied by a technological development that gives rise to medical oncology. An instrument that allows the implementation of individualized therapeutic strategies is the liquid biopsy. Currently, it is the most innovative methodology in medical oncology. Its high potential as a tool for screening and early detection, the possibility of assessing the patient’s condition after diagnosis and relapse, as well as the effectiveness of real-time treatments in different types of cancer. Liquid biopsy is capable of overcoming the limitations of tissue biopsies. The elements that compose the liquid biopsy are circulating tumor cells, circulating tumor nucleic acids, free of cells or contained in exosomes, microvesicle and platelets. Liquid biopsy studies are performed on various biofluids extracted in a non-invasive way, and they can be performed both from the blood and in urine, saliva or cerebrospinal fluid. The development of genotyping techniques, using the elements that make up liquid biopsy, make it possible to detect mutations, intertumoral and intratumoral heterogeneity, and provide molecular information on cancer for application in medical oncology in an individualized way in different types of tumors. Therefore, liquid biopsy has the potential to change the way medical oncology could predict the course of the disease.
  • 1.7K
  • 29 Oct 2020
Topic Review
Vertebrate Cutaneous Sensory Corpuscles
Vertebrate cutaneous sensory corpuscles are specialized sensory nerve formations located in the skin of all vertebrates and responsible for tactile sensation. Functionally, they are mechanoreceptors transducing external mechanical stimuli into electrical signals which will be later led to the Central Nervous System. The afferent innervation of vertebrate skin is supplied by nerve fibers (Aβ, Aδ, C) which are originated from peripheral neurons localized in the dorsal root ganglia (DRG). Aβ nerve fibers end at the dermis level forming several morphotypes of sensory corpuscles with capacity of detecting different stimuli: Merkel cell–neurite complexes, Ruffini corpuscles, Meissner’s corpuscles and Pacinian corpuscles are present in the glabrous skin; while pilo-neural complexes are found in hairy skin. The structure of sensory corpuscles is formed by an axon, non-myelinating Schwann-like cells, a capsule of endoneurial and/or perineurial origin and extracelullar matrix molecules.  The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin through Aβ nerve fibers. Furthermore, low-threshold mechanoreceptors associated with Aδ and C nerve fibers have been identified in hairy skin. The process of mechanotransduction requires the conversion of a mechanical stimulus into electrical signals (action potentials) through the activation of mechanosensible ion channels present both in the axon and the periaxonal cells of sensory corpuscles (i.e., Schwann-, endoneurial- and perineurial-related cells). Most of those putative ion channels belong to the degenerin/epithelial sodium channel (especially the family of acid-sensing ion channels), the transient receptor potential channel superfamilies, and the Piezo family.
  • 1.7K
  • 07 Sep 2020
  • Page
  • of
  • 1815
ScholarVision Creations