Topic Review
RBPs Associated with Cardiomyopathies
Cardiomyopathies are structural and functional abnormalities of the myocardium and represent a heterogenous group of cardiac disorders, including dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), and arrhythmogenic cardiomyopathy (ACM). RNA-binding proteins (RBPs) are major regulators of gene expression at the post-transcriptional level and contribute to generating protein abundance and diversity within a cell.
  • 53
  • 22 Mar 2024
Topic Review
Microbiota–Immunity–Hormone Interactions on Autoimmune Diseases and Infection
The immune system has to develop to defend against pathogens while simultaneously tolerating the beneficial microorganisms that coexist symbiotically with the host. Moreover, the microbiota in the large intestine plays a significant role in preserving mucosal and systemic homeostasis. The interaction between the large intestine microbiota and local immune cells is crucial for directing specific immune responses and, consequently, for performing immunomodulatory functions.
  • 50
  • 21 Mar 2024
Topic Review
Terahertz Radiation Modulates Neuronal Morphology and Dynamics Properties
Terahertz radiation falls within the spectrum of hydrogen bonding, molecular rotation, and vibration, as well as van der Waals forces, indicating that many biological macromolecules exhibit a strong absorption and resonance in this frequency band. Research has shown that the terahertz radiation of specific frequencies and energies can mediate changes in cellular morphology and function by exciting nonlinear resonance effects in proteins. However, current studies have mainly focused on the cellular level and lack systematic studies on multiple levels. Moreover, the mechanism and law of interaction between terahertz radiation and neurons are still unclear. 
  • 61
  • 21 Mar 2024
Topic Review
Genetic Transformation of Forest Trees
Forests represent a vital natural resource and play a crucial role in climate regulation and maintaining biodiversity. However, the growth and development of forest trees are increasingly challenged by rising environmental pressures, particularly detrimental abiotic stressors. To address these challenges, genetic transformation technologies have emerged as effective solutions. Despite various difficulties in genetic transformation for forest trees, including prolonged life cycles, genetic diversity, interspecies variations, and complex regeneration systems, significant research progress has been achieved in tree gene editing, transgenic technology, and methods for delivering exogenous molecules. These technologies have the potential to enhance tree quality, increase productivity, and improve resistance to abiotic stress. 
  • 72
  • 21 Mar 2024
Topic Review
The Plethora of Microbes with Anti-Inflammatory Activities
Inflammation, which has important functions in human defense systems and in maintaining the dynamic homeostasis of the body, has become a major risk factor for the progression of many chronic diseases. Although the applied medical products alleviate the general status, they still exert adverse effects in the long term. For this reason, the solution should be sought in more harmless and affordable agents. Microorganisms offer a wide range of active substances with anti-inflammatory properties. They confer important advantages such as their renewable and inexhaustible nature.
  • 51
  • 21 Mar 2024
Topic Review
The Microbiota in Long COVID
Long COVID has emerged as a huge threat to human health and economy globally. The human microbiota plays an important role in health and disease, participating in the modulation of innate and adaptive immune responses. Thus, multiple studies have found that the nasopharyngeal microbiota is altered in COVID-19 patients, with these changes associated with the onset and/or severity of the disease. However, little is known about the involvement of the microbiota in the pathogenesis of long COVID.
  • 67
  • 21 Mar 2024
Topic Review
The Composition and Structure of Silk Fibroin
Silk fibroin is the principal component of raw silk and represents an extensively studied and utilized biopolymer. Silk fibroin is composed by three chains, light, heavy, and P25 protein. Heavy chain is rigorously organized in redundant aminoacidic sequences rich in glycine and alanine, secondary structure is organized in anti-parallel β-sheets that in turn form β-crystallites stacked in nano-fibrils. Those peculiar fibroin’s structural and compositional elements are crucial to determine the excellent physical properties, such as strength and toughness. Besides these characteristics, the processability and biocompatibility have attracted significant attention for the fabrication of several biomaterials suitable in many fields of application.
  • 446
  • 20 Mar 2024
Topic Review Peer Reviewed
Techniques for Theoretical Prediction of Immunogenic Peptides
Small peptides are an important component of the vertebrate immune system. They are important molecules for distinguishing proteins that originate in the host from proteins derived from a pathogenic organism, such as a virus or bacterium. Consequently, these peptides are central for the vertebrate host response to intracellular and extracellular pathogens. Computational models for prediction of these peptides have been based on a narrow sample of data with an emphasis on the position and chemical properties of the amino acids. In past literature, this approach has resulted in higher predictability than models that rely on the geometrical arrangement of atoms. However, protein structure data from experiment and theory are a source for building models at scale, and, therefore, knowledge on the role of small peptides and their immunogenicity in the vertebrate immune system. The following sections introduce procedures that contribute to theoretical prediction of peptides and their role in immunogenicity. Lastly, deep learning is discussed as it applies to immunogenetics and the acceleration of knowledge by a capability for modeling the complexity of natural phenomena.
  • 322
  • 20 Mar 2024
Topic Review
Applications of Gellan Gum
Gellan gum (GG) is a linear, negatively charged exopolysaccharide that is biodegradable and non-toxic. When metallic ions are present, a hard and transparent gel is produced, which remains stable at a low pH. It exhibits high water solubility, can be easily bio-fabricated, demonstrates excellent film/hydrogel formation, is biodegradable, and shows biocompatibility. These characteristics render GG a suitable option for use in food, biomedical, and cosmetic fields.
  • 64
  • 20 Mar 2024
Topic Review
Major Mycotoxins in Animal Feed
Mycotoxins are secondary metabolites produced by fungi especially those belonging to the genus Aspergillus, Penicillium and Fusarium. Mycotoxin contamination can occur in all agricultural commodities in the field and/or during storage, if conditions are favourable to fungal growth. Regarding animal feed, five mycotoxins (aflatoxins, deoxynivalenol, zearalenone, fumonisins and ochratoxin A) are covered by the EU legislation (regulation or recommendation). Transgressions of these limits are rarely observed in official monitoring programs. However, low level contamination by Fusarium toxins is very common (e.g., deoxynivalenol - DON - is typically found in more than 50% of the samples) and co-contamination is frequently observed. Multi-mycotoxin studies reported 75%–100% of the samples to contain more than one mycotoxin which could impact animal health at already low doses.
  • 56
  • 20 Mar 2024
  • Page
  • of
  • 1745