Topic Review
Thermoregulation Strategies in Domestic Animals
Animals adopt several strategies to regulate their body temperature by promoting heat loss or gain in hot and cold environments, respectively. This mechanism of heat loss or production is performed in thermal windows. A thermal window is a structure where many blood capillaries facilitate thermal exchange in this region. The presence of feathers, hair, or glabrous (hairless) skin and their structural characteristics greatly influence each species’ capacity to maintain thermal comfort. This factor needs to be considered when implementing new monitoring or measuring techniques such as infrared thermography since interpretations may vary due to the presence or absence of these structures. It is essential to recognize the effects of glabrous skin, hair, and feathers on thermoregulation to identify species-specific thermal windows that allow accurate evaluations of the thermal state of domestic animals.
  • 3.6K
  • 19 Apr 2022
Topic Review
Dead Cas Systems
The gene editing tool CRISPR-Cas has become the foundation for developing numerous molecular systems used in research and, increasingly, in medical practice. In particular, Cas proteins devoid of nucleolytic activity (dead Cas proteins; dCas) can be used to deliver functional cargo to programmed sites in the genome. In this review, we describe current CRISPR systems used for developing different dCas-based molecular approaches and summarize their most significant applications
  • 3.6K
  • 30 Oct 2020
Topic Review
Evolution of Dinosaurs
Dinosaurs evolved within a single lineage of archosaurs 243-233 Ma (million years ago) from the Anisian to the Carnian ages, the latter part of the middle Triassic. Dinosauria is a well-supported clade, present in 98% of bootstraps. It is diagnosed by many features including loss of the postfrontal on the skull and an elongate deltopectoral crest on the humerus. In March 2017, scientists reported a new way of classifying the dinosaur family tree, based on newer and more evidence than available earlier. According to the new classification, the original dinosaurs, arising 200 million years ago, were small, two-footed omnivorous animals with large grasping hands. Descendants (for the non-avian dinosaurs) lasted until 66 million years ago.
  • 3.6K
  • 14 Oct 2022
Topic Review
Light-independent Reactions
The light-independent reactions, or dark reactions, of photosynthesis are chemical reactions that convert carbon dioxide and other compounds into glucose. These reactions occur in the stroma, the fluid-filled area of a chloroplast outside the thylakoid membranes. These reactions take the products (ATP and NADPH) of light-dependent reactions and perform further chemical processes on them.
  • 3.6K
  • 09 Nov 2022
Topic Review
Dracorex
Dracorex is a controversial dinosaur genus of the family Pachycephalosauridae, from the Late Cretaceous of North America. The type (and only known) species is Dracorex hogwartsia, meaning "dragon king of Hogwarts". This dinosaur is named for the wizard school in Harry Potter books. It is known from one nearly complete skull (the holotype TCMI 2004.17.1), as well as four cervical vertebrae: the atlas, third, eighth and ninth. These were discovered in the Hell Creek Formation in South Dakota by three amateur paleontologists from Sioux City, in the U.S. state of Iowa. The skull was subsequently donated to the Children's Museum of Indianapolis for study in 2004, and was formally described by Bob Bakker and Robert Sullivan in 2006. However, Jack Horner et al. suspect that it is a juvenile Pachycephalosaurus and an analysis of pachycephalosaur fossils by a joint team from the University of California, Berkeley and the Museum of the Rockies has questioned the validity of two named genera of pachycephalosaur, Dracorex and Stygimoloch. According to the team, specimens of Dracorex and Stygimoloch might actually represent earlier growth stages of Pachycephalosaurus. This has been supported in a 2016 analysis of the youngest Pachycephalosaurus material known, which indicates that the unique features of Dracorex represent instead ontogenetically variant features on a Pachycephalosaurus growth curve.
  • 3.6K
  • 03 Nov 2022
Topic Review
Arthropod
Arthropods (/ˈɑːrθrəpɒd/, from grc ἄρθρον (arthron) 'joint', and πούς (pous) 'foot' (gen. ποδός)) are invertebrate animals having an exoskeleton, a segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and cuticle made of chitin, often mineralised with calcium carbonate. The arthropod body plan consists of segments, each with a pair of appendages. Arthropods are bilaterally symmetrical and their body possesses an external skeleton. In order to keep growing, they must go through stages of moulting, a process by which they shed their exoskeleton to reveal a new one. Some species have wings. They are an extremely diverse group, with up to 10 million species. The haemocoel, an arthropod's internal cavity, through which its haemolymph – analogue of blood – circulates, accommodates its interior organs; it has an open circulatory system. Like their exteriors, the internal organs of arthropods are generally built of repeated segments. Their nervous system is "ladder-like", with paired ventral nerve cords running through all segments and forming paired ganglia in each segment. Their heads are formed by fusion of varying numbers of segments, and their brains are formed by fusion of the ganglia of these segments and encircle the esophagus. The respiratory and excretory systems of arthropods vary, depending as much on their environment as on the subphylum to which they belong. Arthropods use combinations of compound eyes and pigment-pit ocelli for vision. In most species, the ocelli can only detect the direction from which light is coming, and the compound eyes are the main source of information, but the main eyes of spiders are ocelli that can form images and, in a few cases, can swivel to track prey. Arthropods also have a wide range of chemical and mechanical sensors, mostly based on modifications of the many bristles known as setae that project through their cuticles. Similarly, their reproduction and development are varied; all terrestrial species use internal fertilization, but this is sometimes by indirect transfer of the sperm via an appendage or the ground, rather than by direct injection. Aquatic species use either internal or external fertilization. Almost all arthropods lay eggs, but many species give birth to live young after the eggs have hatched inside the mother, and a few are genuinely viviparous, such as aphids. Arthropod hatchlings vary from miniature adults to grubs and caterpillars that lack jointed limbs and eventually undergo a total metamorphosis to produce the adult form. The level of maternal care for hatchlings varies from nonexistent to the prolonged care provided by social insects. The evolutionary ancestry of arthropods dates back to the Cambrian period. The group is generally regarded as monophyletic, and many analyses support the placement of arthropods with cycloneuralians (or their constituent clades) in a superphylum Ecdysozoa. Overall, however, the basal relationships of animals are not yet well resolved. Likewise, the relationships between various arthropod groups are still actively debated. Today, Arthropods contribute to the human food supply both directly as food, and more importantly, indirectly as pollinators of crops. Some species are known to spread severe disease to humans, livestock, and crops.
  • 3.6K
  • 06 May 2023
Topic Review
Candida albicans
Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals’ skin.
  • 3.6K
  • 23 Feb 2021
Topic Review
Action Myoclonus–Renal Failure Syndrome
Action myoclonus–renal failure (AMRF) syndrome causes episodes of involuntary muscle jerking or twitching (myoclonus) and, often, kidney (renal) disease. Although the condition name refers to kidney disease, not everyone with the condition has problems with kidney function.
  • 3.6K
  • 23 Dec 2020
Topic Review
Natural Preservatives for Fish
Fish is extremely perishable as a result of rapid microbial growth naturally present in fish or from contamination. Synthetic preservatives are widely used in fish storage to extend shelf life and maintain quality and safety. Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials. Bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria. Plant-derived antimicrobials could prolong fish shelf life and decrease lipid oxidation. Animal-derived antimicrobials also have good antimicrobial activities.
  • 3.5K
  • 25 Jun 2021
Topic Review
Ascomycota
Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus" (from grc ἀσκός (askós) 'sac, wineskin'), a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of the Ascomycota are asexual, meaning that they do not have a sexual cycle and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens (loosely termed "ascolichens") such as Cladonia belong to the Ascomycota. Ascomycota is a monophyletic group (it contains all descendants of one common ancestor). Previously placed in the Deuteromycota along with asexual species from other fungal taxa, asexual (or anamorphic) ascomycetes are now identified and classified based on morphological or physiological similarities to ascus-bearing taxa, and by phylogenetic analyses of DNA sequences. The ascomycetes are of particular use to humans as sources of medicinally important compounds, such as antibiotics, for fermenting bread, alcoholic beverages and cheese. Penicillium species on cheeses and those producing antibiotics for treating bacterial infectious diseases are examples of ascomycetes. Many ascomycetes are pathogens, both of animals, including humans, and of plants. Examples of ascomycetes that can cause infections in humans include Candida albicans, Aspergillus niger and several tens of species that cause skin infections. The many plant-pathogenic ascomycetes include apple scab, rice blast, the ergot fungi, black knot, and the powdery mildews. Several species of ascomycetes are biological model organisms in laboratory research. Most famously, Neurospora crassa, several species of yeasts, and Aspergillus species are used in many genetics and cell biology studies.
  • 3.5K
  • 04 Nov 2022
  • Page
  • of
  • 1746
Video Production Service