Topic Review
Genome-Editing Systems in Rice Improvement
Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently. 
  • 1.5K
  • 13 Jul 2021
Topic Review
Organic and Inorganic Nanoparticles in Foods
Inorganic or organic nanoparticles are often incorporated into foods to enhance their quality, stability, nutrition, or safety. When they pass through the gastrointestinal environment, the properties of these nanoparticles are altered, which impacts their biological effects and potential toxicity. Consequently, there is a need to understand how different kinds of nanoparticles behave within the gastrointestinal tract.
  • 1.5K
  • 07 Apr 2022
Topic Review
FTIR Spectroscopy as Diagnostic Tools
Infrared spectroscopy has long been used to characterize chemical compounds, but the applicability of this technique to the analysis of biological materials containing highly complex chemical components is arguable. However, recent advances in the development of infrared spectroscopy have significantly enhanced the capacity of this technique in analyzing various types of biological specimens. Consequently, there is an increased number of studies investigating the application of infrared spectroscopy in screening and diagnosis of various diseases. The lack of highly sensitive and specific methods for early detection of cancer has warranted the search for novel approaches. Being more simple, rapid, accurate, inexpensive, non-destructive and suitable for automation compared to existing screening, diagnosis, management and monitoring methods, Fourier transform infrared spectroscopy can potentially improve clinical decision-making and patient outcomes by detecting biochemical changes in cancer patients at the molecular level. Besides the commonly analyzed blood and tissue samples, extracellular vesicle-based method has been gaining popularity as a non-invasive approach. Therefore, infrared spectroscopic analysis of extracellular vesicles could be a useful technique in the future for biomedical applications.
  • 1.5K
  • 23 Jun 2021
Topic Review
The NLRP3 Inflammasome
As a critical component of the innate immune system, the nucleotide-binding and oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome can be activated by various endogenous and exogenous danger signals. Activation of this cytosolic multiprotein complex triggers the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and initiates pyroptosis, an inflammatory form of programmed cell death. The NLRP3 inflammasome fuels both chronic and acute inflammatory conditions and is critical in the emergence of inflammaging. Recent advances have highlighted that various metabolic pathways converge as potent regulators of the NLRP3 inflammasome. This review focuses on our current understanding of the metabolic regulation of the NLRP3 inflammasome activation, and the contribution of the NLRP3 inflammasome to inflammaging.
  • 1.5K
  • 24 Aug 2020
Topic Review
Abiotic Stress in Plants
Abiotic stress in plants is a crucial issue worldwide, especially heavy-metal contaminants, salinity, and drought. These stresses may raise a lot of issues such as the generation of reactive oxygen species, membrane damage, loss of photosynthetic efficiency, etc. that could alter crop growth and developments by affecting biochemical, physiological, and molecular processes, causing a significant loss in productivity. To overcome the impact of these abiotic stressors, many strategies could be considered to support plant growth including the use of nanoparticles (NPs). However, the majority of studies have focused on understanding the toxicity of NPs on aquatic flora and fauna, and relatively less attention has been paid to the topic of the beneficial role of NPs in plants stress response, growth, and development. More scientific attention is required to understand the behavior of NPs on crops under these stress conditions. 
  • 1.5K
  • 19 Jul 2021
Topic Review
Chelicerata
The subphylum Chelicerata (from New Latin, from fr chélicère, from grc χηλή (Script error: No such module "Ancient Greek".) 'claw, chela', and κέρας (Script error: No such module "Ancient Greek".) 'horn') constitutes one of the major subdivisions of the phylum Arthropoda. It contains the sea spiders, horseshoe crabs, and arachnids (including harvestmen, scorpions, spiders, solifuges, ticks, and mites, among many others), as well as a number of extinct lineages, such as the eurypterids (sea scorpions) and chasmataspidids. The Chelicerata originated as marine animals in the Middle Cambrian period; the first confirmed chelicerate fossils, belonging to Sanctacaris, date from 508 million years ago. The surviving marine species include the four species of xiphosurans (horseshoe crabs), and possibly the 1,300 species of pycnogonids (sea spiders), if the latter are indeed chelicerates. On the other hand, there are over 77,000 well-identified species of air-breathing chelicerates, and there may be about 500,000 unidentified species. Like all arthropods, chelicerates have segmented bodies with jointed limbs, all covered in a cuticle made of chitin and proteins. The chelicerate body plan consists of two tagmata, the prosoma and the opisthosoma, except that mites have lost a visible division between these sections. The chelicerae, which give the group its name, are the only appendages that appear before the mouth. In most sub-groups, they are modest pincers used to feed. However, spiders' chelicerae form fangs that most species use to inject venom into prey. The group has the open circulatory system typical of arthropods, in which a tube-like heart pumps blood through the hemocoel, which is the major body cavity. Marine chelicerates have gills, while the air-breathing forms generally have both book lungs and tracheae. In general, the ganglia of living chelicerates' central nervous systems fuse into large masses in the cephalothorax, but there are wide variations and this fusion is very limited in the Mesothelae, which are regarded as the oldest and most basal group of spiders. Most chelicerates rely on modified bristles for touch and for information about vibrations, air currents, and chemical changes in their environment. The most active hunting spiders also have very acute eyesight. Chelicerates were originally predators, but the group has diversified to use all the major feeding strategies: predation, parasitism, herbivory, scavenging and eating decaying organic matter. Although harvestmen can digest solid food, the guts of most modern chelicerates are too narrow for this, and they generally liquidize their food by grinding it with their chelicerae and pedipalps and flooding it with digestive enzymes. To conserve water, air-breathing chelicerates excrete waste as solids that are removed from their blood by Malpighian tubules, structures that also evolved independently in insects. While the marine horseshoe crabs rely on external fertilization, air-breathing chelicerates use internal but usually indirect fertilization. Many species use elaborate courtship rituals to attract mates. Most lay eggs that hatch as what look like miniature adults, but all scorpions and a few species of mites keep the eggs inside their bodies until the young emerge. In most chelicerate species the young have to fend for themselves, but in scorpions and some species of spider the females protect and feed their young. The evolutionary origins of chelicerates from the early arthropods have been debated for decades. Although there is considerable agreement about the relationships between most chelicerate sub-groups, the inclusion of the Pycnogonida in this taxon has recently been questioned (see below), and the exact position of scorpions is still controversial, though they were long considered the most basal of the arachnids. Venom has evolved three times in the chelicerates; spiders, scorpions and pseudoscorpions, or four times if the hematophagous secretions produced by ticks are included. In addition there have been undocumented descriptions of venom glands in Solifugae. Chemical defense has been found in whip scorpions, shorttailed whipscorpions, harvestmen, beetle mites and sea spiders. Although the venom of a few spider and scorpion species can be very dangerous to humans, medical researchers are investigating the use of these venoms for the treatment of disorders ranging from cancer to erectile dysfunction. The medical industry also uses the blood of horseshoe crabs as a test for the presence of contaminant bacteria. Mites can cause allergies in humans, transmit several diseases to humans and their livestock, and are serious agricultural pests.
  • 1.5K
  • 18 Oct 2022
Topic Review
Trypanosomatid Pathogens
Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they caused requires the sampling of body fluids (blood, lymph, peritoneal fluid, cerebrospinal fluid, etc.) or organ biopsies (bone marrow, spleen, etc.), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but their appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials.
  • 1.5K
  • 29 Oct 2020
Topic Review
Management of Herbaceous/Horticultural Crops
Preserving soil quality and increasing soil water availability is an important challenge to ensure food production for a growing global population. As demonstrated by several studies, conservative crop management, combined with soil cover and crop diversification, can significantly reduce soil and water losses. 
  • 1.5K
  • 07 May 2021
Topic Review
Mycotoxins in Beverages
Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. 
  • 1.5K
  • 18 May 2021
Topic Review
Microorganisms
Microorganisms are a diverse group of microscopic organisms including archaea, bacteria, fungi, protozoa, algae, and viruses. Microbial diversity produces a massive pool of unique chemicals, which have become a valuable source for innovative biotechnology. About 23,000 secondary metabolites from microorganisms are known, out of which actinomycetes exclusively produce approximately 42%, whereas fungi form almost similar amounts (42%), and the remaining 16% is produced by eubacteria.
  • 1.5K
  • 27 Jan 2022
  • Page
  • of
  • 1746
Video Production Service