Topic Review
Antioxidant Materials in Oral and Maxillofacial Tissue Regeneration
Oral and maxillofacial tissue defects caused by trauma, tumor reactions, congenital anomalies, ischemic diseases, infectious diseases, surgical resection, and odontogenic cysts present a formidable challenge for reconstruction. Antioxidants are materials that preserve cells from the damage caused by free radicals. They can control the harm of oxidative stress directly through the reaction with free radicals or indirectly through inhibition of the activity of free radical-producing enzymes or improvement of the activity of intracellular antioxidant enzymes. In addition to the inhibitory impact of antioxidant materials on reactive oxygen species (ROS) products, their osteogenic/odontogenic differentiation effects are of great interest in dental and facial tissue regeneration.
  • 245
  • 23 May 2023
Topic Review
Application of HS Containing Biomatrices for Neural Repair
The fine structure (sulfation position and density) of the HS side chains of perlecan is an important regulatory determinant in the differentiation of pluripotent stem cells in the niche environment in neural tissues. Interaction of HS with growth factors (FGF-2) and morphogens (Wnt, SHh) is also essential for the long-term viability of recycling stem cells and the proliferation and differentiation of stem cells that have escaped from quiescent recycling and along with interactions with niche ECM components regulates the development of stem cell lineages that attain migratory properties facilitating their participation in neural repair processes. The expression of HS biosynthetic enzymes in the niche and tissue environments also have important roles in determining the fine structure of HS and how it exerts these effects spatially and temporally in tissue development and neural repair processes and also has roles in the determination of synaptic specificity, axonal guidance, synapse development and synapse function.
  • 239
  • 18 May 2022
Topic Review
Application of Hydrogels for Bone Regeneration
Hydrogels are versatile biomaterials characterized by three-dimensional, cross-linked, highly hydrated polymeric networks. These polymers exhibit a great variety of biochemical and biophysical properties, which allow for the diffusion of diverse molecules, such as drugs, active ingredients, growth factors, and nanoparticles. Meanwhile, these polymers can control chemical and molecular interactions at the cellular level. The polymeric network can be molded into different structures, imitating the structural characteristics of surrounding tissues and bone defects. Interestingly, the application of hydrogels in bone tissue engineering (BTE) has been gathering significant attention due to the beneficial bone improvement results that have been achieved.
  • 821
  • 29 Jun 2023
Topic Review
Application of Microfluidic Systems for Neural Studies
Whereas the axons of the peripheral nervous system (PNS) spontaneously regenerate after an injury, the occurring regeneration is rarely successful because axons are usually directed by inappropriate cues. Therefore, finding successful ways to guide neurite outgrowth, in vitro, is essential for neurogenesis. Microfluidic systems reflect more appropriately the in vivo environment of cells in tissues such as the normal fluid flow within the body, consistent nutrient delivery, effective waste removal, and mechanical stimulation due to fluid shear forces. At the same time, it has been well reported that topography affects neuronal outgrowth, orientation, and differentiation.
  • 183
  • 07 Aug 2023
Topic Review
Application of Nanocellulose-Based Aerogels in BTE
Based on the principles of biology and engineering, bone tissue engineering (BTE) has been widely used to construct substitutes for repairing and improving bone function. The skeletal system is a highly mineralized, vascularized, and connective tissue, which provides significant mechanical strength, fracture toughness, and weight-bearing capacity to protect internal organs. An ideal bone substitute should mimic the microstructure of natural bone tissue and provide a biological environment for bone regeneration and tissue repair. Furthermore, the design and preparation of hybrid nanocellulose hydrogels should fully understand the structure and composition of natural bone tissue.
  • 242
  • 05 Jun 2023
Topic Review
Application of Prime Editing to Liver Hereditary Diseases
Gene therapy holds tremendous potential in the treatment of inherited diseases. Unlike traditional medicines, which only treat the symptoms, gene therapy has the potential to cure the disease by addressing the root of the problem: genetic mutations. The discovery of CRISPR/Cas9 in 2012 paved the way for the development of those therapies. Improvement of this system led to the recent development of an outstanding technology called prime editing. This system can introduce targeted insertions, deletions, and all 12 possible base-to-base conversions in the human genome. Since the first publication on prime editing in 2019, groups all around the world have worked on this promising technology to develop a treatment for genetic diseases. Liver diseases are currently the most studied field for human gene therapy by prime editing. To date, prime editing has been attempted in preclinical studies for tyrosinemia type 1, alpha-1-antitrypsin deficiency, phenylketonuria, DGAT1-deficiency, bile salt export pump deficiency, liver cancer, and for a liver disease caused by a mutation in the DNMT1 gene.
  • 593
  • 21 Feb 2023
Topic Review
Applications about Single-Cell Printing
Single-cell analysis has become a powerful and indispensable tool in modern biological and medical research. Single-cell isolation is the key step for single-cell analysis. Single-cell printing could utilize various microfluidic technologies for single-cell isolation and analysis, such as droplet microfluidics, microwell arrays, and hydrodynamic traps. Single-cell printing shows several distinct advantages among the single-cell isolation techniques, such as precise deposition, high encapsulation efficiency, and easy recovery. With the development of single-cell printing in the past decade, various single-cell printing-based single-cell analyses and applications have been performed, ranging from single-cell array-based screening and single-cell-based mass spectroscopy to live three-dimensional tissue formation.
  • 555
  • 11 Feb 2022
Topic Review
Applications of Bioprinting on Pathological Liver Models
Significant progress has been made in liver tissue engineering through the use of 3D bioprinting technology. This technology offers the ability to create personalized biological structures with precise geometric design capabilities. The complex and multifaceted nature of liver diseases underscores the need for advanced technologies to accurately mimic the physiological and mechanical characteristics, as well as organ-level functions, of liver tissue in vitro. Bioprinting stands out as a superior option over traditional two-dimensional cell culture models and animal models due to its stronger biomimetic advantages.
  • 240
  • 17 May 2023
Topic Review
Applications of Hydrogels in Biomedicine
Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. 
  • 327
  • 20 Jul 2022
Topic Review
Applications of Magnetic Nanoparticles, Materials and Fields
Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels’ activity and cyclic AMP response element-binding protein (CREB) phosphorylation.
  • 385
  • 06 Feb 2023
  • Page
  • of
  • 28