Topic Review
Venom Constituents of Rattlesnake Venoms
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. 
  • 53
  • 18 Apr 2024
Topic Review
Anticancer Effects of Bee Venom and Its Components
Among the various natural compounds used in alternative and Oriental medicine, toxins isolated from different organisms have had their application for many years, and Apis mellifera venom has been studied the most extensively. Numerous studies dealing with the positive assets of bee venom (BV) indicated its beneficial properties. The usage of bee products to prevent the occurrence of diseases and for their treatment is often referred to as apitherapy and is based mainly on the experience of the traditional system of medical practice in diverse ethnic communities. Today, a large number of studies are focused on the antitumor effects of BV, which are mainly attributed to its basic polypeptide melittin (MEL). 
  • 57
  • 12 Mar 2024
Topic Review
Applications of the Comet Assay in Plant Studies
Contrarily to chronic stresses, acute (i.e., fast and dramatic) changes in environmental factors like temperature, radiation, concentration of toxic substances, or pathogen attack often lead to DNA damage. Some of the stress factors are genotoxic, i.e., they damage the DNA via physical interactions or via interference with DNA replication/repair machinery. However, cytotoxic factors, i.e., those that do not directly damage the DNA, can lead to secondary genotoxic effects either via the induction of the production of reactive oxygen, carbon, or nitrogen species, or via the activation of programmed cell death and related endonucleases. The extent of this damage, as well as the ability of the cell to repair it, represent a significant part of plant stress responses. Information about DNA damage is important for physiological studies as it helps to understand the complex adaptive responses of plants and even to predict the outcome of the plant’s exposure to acute stress. Single cell gel electrophoresis (Comet assay) provides a convenient and relatively inexpensive tool to evaluate DNA strand breaks in the different organs of higher plants, as well as in unicellular algae. Comet assays are widely used in ecotoxicology and biomonitoring applications.
  • 60
  • 29 Feb 2024
Topic Review
Toxic Effects of Pyrrolizidine Alkaloids
Pyrrolizidine alkaloids (PAs) are naturally occurring secondary metabolites of plants. More than 660 types of PAs have been identified from an estimated 6000 plants, and approximately 120 of these PAs are hepatotoxic. As a result of PAs being found in spices, herbal teas, honey, and milk, PAs are considered contaminants in foods, posing a potential risk to human health.
  • 167
  • 27 Feb 2024
Topic Review
Reciprocal Effects of Metal Mixtures on Phytoplankton
Phytoplankton are a key part of marine and freshwater ecosystems as primary producers of the food web. They are exceptional in their role in heavy metals bioremediation. Algae and cyanobacteria when exposed to metals in mixture, show altered responses as compared to the single metal exposure. Algal parameters such as growth, chlorophyll content, photosynthesis, metal uptake and metabolism, or lipid profile are commonly determined to find out the level of stress in algal cells resulting from heavy metals. Phytoplankton have several pathways of metal entry, detoxification and tolerance. It is essential to estimate reciprocal toxicity of metals as in real-time, metals are released in the environment in bulk (reciprocal effects). Phytoplankton can be a powerful tool in such risk assessments. 
  • 54
  • 22 Feb 2024
Topic Review
Fish and Seafood Safety
Toxic metals that are released into aquatic environments from natural and anthropogenic sources are absorbed by aquatic organisms and may threaten the health of both aquatic organisms and humans. Despite this, there have been limited studies on the metal concentrations in fish and humans in Central Asia. 
  • 86
  • 02 Feb 2024
Topic Review
The Gut–Liver–Brain Axis
The gut–liver–brain axis constitutes a multidirectional communication network that connects the enteric, hepatic, and central nervous systems. Through the complex interplay between the gut–liver, gut–brain, and liver–brain axes, this communication network extends to involve endocrine, immune (humoral), and metabolic routes of communication. Within the network, the gut and liver affect cognitive behaviors through the host’s immune responses and the regulation of microbiota, and the brain also influences intestinal and hepatic activities. Studies in animals have shown that an impaired gut–liver–brain axis is associated with diseases such as hepatic encephalopathy, Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis, depression, and autism spectrum disorder (ASD).
  • 199
  • 01 Feb 2024
Topic Review
Etiology and Route of Access of Particulate Matter
The primary origin of particulate matter (PM) is from a combination of industrial activity, internal combustion engines, and geographic and meteorological conditions linked to the increased forest fires.
  • 70
  • 22 Jan 2024
Topic Review
Biological Clocks as Biomarkers of Aging
A key objective in biological aging research is to identify biomarkers capable of predicting the biological age (B-age) of different tissues, as an alternative to relying solely on chronological age (C-age). Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. 
  • 214
  • 29 Dec 2023
Topic Review
Oxidative Stress and Lung Fibrosis
Lung fibrosis is a progressive fatal disease in which deregulated wound healing of lung epithelial cells drives progressive fibrotic changes. Persistent lung injury due to oxidative stress and chronic inflammation are central features of lung fibrosis. Cigarette smoking causes oxidative stress and is a risk factor for lung fibrosis.
  • 121
  • 30 Nov 2023
  • Page
  • of
  • 13