Topic Review
Irritator
Irritator is a genus of spinosaurid dinosaur that lived in what is now Brazil during the Albian stage of the Early Cretaceous Period, about 113 to 110 million years ago. It is known from a nearly complete skull found in the Romualdo Formation of the Araripe Basin. Fossil dealers had acquired this skull and sold it to the State Museum of Natural History Stuttgart. In 1996, the specimen became the holotype of the type species Irritator challengeri. The genus name comes from the word "irritation", reflecting the feelings of paleontologists who found the skull had been heavily damaged and altered by the collectors. The species name is a homage to the fictional character Professor Challenger from Arthur Conan Doyle's novels. Some paleontologists regard Angaturama limai—known from a snout tip that was described later in 1996—as a potential junior synonym of Irritator. Both animals hail from the same stratigraphic units of the Araripe Basin. It was also previously proposed that Irritator and Angaturama's skull parts belonged to the same specimen. Although this has been cast into doubt, more overlapping fossil material is needed to confirm whether they are the same animal or not. Other spinosaurid skeletal material, some of which could belong to Irritator or Angaturama, was retrieved from the Romualdo Formation, allowing for a replica skeleton to be made and mounted for display at the National Museum of Rio de Janeiro in 2009. Estimated at between 6 and 8 meters (20 and 26 ft) in length, Irritator weighed around 1 tonne (1.1 short tons), making it one of the smallest spinosaurids known. Its long, shallow and slender snout was lined with straight and unserrated conical teeth. Lengthwise atop the head ran a thin sagittal crest, to which powerful neck muscles were likely anchored. The nostrils were positioned far back from the tip of the snout, and a rigid secondary palate on the roof of the mouth would have strengthened the jaw when feeding. Belonging to a subadult, Irritator challengeri's holotype remains the most completely preserved spinosaurid skull yet found. The Angaturama snout tip expanded to the sides in a rosette-like shape, bearing long teeth and an unusually tall crest. One possible skeleton indicates it, like other spinosaurids, had enlarged first-finger claws and a sail running down its back. Irritator had been mistaken initially for a pterosaur, and later a maniraptoran dinosaur. In 1996, the animal was identified as a spinosaurid theropod. The holotype skull was thoroughly prepared before being redescribed in 2002, confirming this classification. Both Irritator and Angaturama belong to the Spinosaurinae subfamily. A generalist diet—like that of today's crocodilians—has been suggested; Irritator might have preyed mainly on fish and any other small prey animals it could catch. Fossil evidence is known of an individual that ate a pterosaur, either from hunting or scavenging it. Irritator may have had semiaquatic habits, and inhabited the tropical environment of a coastal lagoon surrounded by dry regions. It coexisted with other carnivorous theropods as well as turtles, crocodyliforms, and a large number of pterosaur and fish species.
  • 1.9K
  • 03 Nov 2022
Topic Review
Life Cycle Assessment in Aviation
With growing environmental awareness and the resulting pressure on aviation, ecological impact assessments are becoming increasingly important. Life cycle assessment has been widely used in the literature as a tool to assess the environmental impact of aircraft. In the following, a brief overview of the existing research on the topic of life cycle assessment in aviation is given. This is concluded with a short summary and an introduction to a possible combination with discrete-event simulation.
  • 1.9K
  • 09 Sep 2022
Topic Review
Classical Plant Breeding
Classical plant breeding uses deliberate interbreeding (crossing) of closely or distantly related species to produce new crops with desirable properties. Plants are crossed to introduce traits/genes from a particular variety into a new genetic background. For example, a mildew resistant pea may be crossed with a high-yielding but susceptible pea, the goal of the cross being to introduce mildew resistance without losing the high-yield characteristics. Progeny from the cross would then be crossed with the high-yielding parent to ensure that the progeny were most like the high-yielding parent, (backcrossing), the progeny from that cross would be tested for yield and mildew resistance and high-yielding resistant plants would be further developed. Plants may also be crossed with themselves to produce inbred varieties for breeding. Germplasm resources from genebanks have invaluable for classical breeding. Classical breeding relies heavily on the naturally occuring plant life-cycle and homologous recombination to generate genetic diversity and to eliminate undesirable traits. It may also makes use of a variety of artificial laboratory procedures to overcome obstacles to introduction of useful traits from wild species that do not usually exchange genes with the domesticated line. These approaches include in vitro techniques such as protoplast fusion, embryo rescue or mutagenisis (see below) to generate genetic alterations and produce transgenic plants that would not exist in nature. Traits that breeders' have tried to incorporate into crop plants in the last 100 years include: Intraspecific hybridization within a plant species was demonstrated by Charles Darwin and Gregor Mendel, and was further developed by geneticists and plant breeders. In the early 20th century, plant breeders realized that Mendel's findings on the non-random nature of inheritance could be applied to seedling populations produced through deliberate pollinations to predict the frequencies of different types. In 1908, George Harrison Shull described heterosis, also known as hybrid vigor. Heterosis describes the tendency of the progeny of a specific cross to outperform both parents. The detection of the usefulness of heterosis for plant breeding has lead to the development of inbred lines that reveal a heterotic yield advantage when they are crossed. Maize was the first species where heterosis was widely used to produce hybrids. Heterosis made breeders aware of the broad practical value of many genes carried in plant chromosomes even when the identity and trait specified by the paticular genes is unknown - that is that diverse plant Germplasm is generally valuable to the breeder. By the 1920s, statistical methods were developed to analyze gene action and distinguish heritable variation from variation caused by environment. In 1933, another important breeding technique, cytoplasmic male sterility (CMS), developed in maize, was described by Marcus Morton Rhoades. CMS is a maternally inherited trait that makes the plant produce sterile pollen, enabling the production of hybrids and removing the need for detasseling maize plants. The scientific use of Transgenic plants in farming gained impetus in the 1930s when a transgenic wheat variety named Hope bred by E. S. McFadden with a transgene originating in a wild grass saved American wheat growers from devastating stem rust outbreaks. These early breeding techniques resulted in large yield increase in the United States in the early 20th century. Similar yield increases were not produced elsewhere until after World War II, the Green Revolution increased crop production in the developing world in the 1960s. Success stories like Hope and hybrid-vigor made it clear that genetic divesity present in wild-species was of great potential value to plant breeders, and eventially lead to the establisment of Germplasm collections consisting of seed-banks devoted to preservation of potentially useful uncharacterised traits for posterity. Following World War II a number of techniques were developed that allowed plant breeders to hybridize distantly related species, and artificially induce genetic diversity. When distantly related species are crossed, plant breeders make use of a number of plant tissue culture techniques to produce progeny from other wise fruitless mating. Interspecific and intergeneric hybrids are produced from a cross of related species or genera that do not normally sexually reproduce with each other. These crosses are referred to as Wide crosses. The cereal triticale is a wheat and rye hybrid. The first generation created from the cross was sterile, so the cell division inhibitor colchicine was used to double the number of chromosomes in the cell. Cells with an uneven number of chromosomes are sterile. Failure to produce a hybrid may be due to pre- or post-fertilization incompatibility. If fertilization is possible between two species or genera, the hybrid embryo may abort before maturation. If this does occur the embryo resulting from an interspecific or intergeneric cross can sometimes be rescued and cultured to produce a whole plant. Such a method is referred to as Embryo Rescue. This technique has been used to produce new rice for Africa, an interspecific cross of Asian rice (Oryza sativa) and African rice (Oryza glaberrima). Hybrids may also be produced by a technique called protoplast fusion. In this case protoplasts are fused, usually in an electric field. Viable recombinants can be regenerated in culture. Chemical mutagens like EMS and DMSO, radiation and transposons are used to generate mutants with desirable traits to be bred with other cultivars. Classical plant breeders also generate genetic diversity within a species by exploiting a process called somaclonal variation, which occurs in plants produced from tissue culture, particularly plants derived from callus. Induced polyploidy, and the addition or removal of chromosomes using a technique called chromosome engineering also found uses. When a desirable trait has been bred into a species, a number of crosses to the favoured parent are made to make the new plant as similar as the parent as possible. Returning to the example of the mildew resistant pea being crossed with a high-yielding but susceptible pea, to make the mildew resistant progeny of the cross most like the high-yielding parent, the progeny will be crossed back to that parent for several generations (See backcrossing ). This process removes most of the genetic contribution of the mildew resistant parent. Classical breeding is therefore a cyclical process. It should be noted that with classical breeding techniques, the breeder does not know exactly what genes have been introduced to the new cultivars. Some scientists therefore argue that plants produced by classical breeding methods should undergo the same safety testing regime as genetically modified plants. There have been instances where plants bred using classical techniques have been unsuitable for human consumption, for example the poison solanine was accidentally re-introduced into varieties of potato through plant breeding.
  • 1.9K
  • 14 Oct 2022
Topic Review
Building-Integrated Photovoltaics in Singapore
Building-integrated photovoltaics (BIPVs) represent an effective technology to attain zero energy buildings (ZEBs) via solar energy use. A BIPV system can seamlessly integrate PV modules into external building surfaces, such as walls, roofs, shading devices, and decorative components. Moreover, it can generate clean energy. From an environmental and economic perspective, PV energy generation provides more advantages than fossil fuel-based energy generation. First, in contrast to the limited storage of fossil fuels, the solar radiation reaching the Earth’s surface every day contains 10,000 times the energy requirements of humans on a daily basis. Second, the manufacturing process of PV modules produces only a small amount of carbon dioxide (20–30 g carbon dioxide equivalent (CO2e/kWh)).
  • 1.9K
  • 30 Aug 2022
Topic Review
Inner Core
The Earth's inner core is the Earth's innermost part. It is primarily a solid ball with a radius of about 1,220 kilometres (760 miles), which is about 70% of the Moon's radius. It is composed of an iron–nickel alloy and some other elements. The temperature at the inner core's surface is approximately 5,700 K (5,430 °C) or 9806 °F, which is about the temperature at the surface of the Sun.
  • 1.9K
  • 10 Nov 2022
Topic Review Peer Reviewed
Bioplastic as a Substitute for Plastic in Construction Industry
Bioplastics have proven to be a viable substitute for plastics in some sectors, although their use in construction is still limited. The construction sector currently uses 23% of the world’s plastic production, both for the materials themselves and for their packaging and protection. A considerable part is not recycled and is dispersed into the environment or ends up in landfills. In response to the environmental problems caused by oil-based plastic pollution, the development of biocomposite materials such as bioplastics represents a paradigm shift. This entry aims to explain what bioplastics are, providing a classification and the description of the different properties and applications. It also lays out the most interesting uses of these materials in the construction field. 
  • 1.9K
  • 02 Aug 2022
Topic Review
Biochar for Wastewater Treatment
Biochar as a stable carbon-rich material shows incredible potential to handle water/wastewater contaminants. Its application is gaining increasing interest due to the availability of feedstock, the simplicity of the preparation methods, and their enhanced physico-chemical properties. The efficacy of biochar to remove organic and inorganic pollutants depends on its surface area, pore size distribution, surface functional groups, and the size of the molecules to be removed, while the physical architecture and surface properties of biochar depend on the nature of feedstock and the preparation method/conditions. For instance, pyrolysis at high temperatures generally produces hydrophobic biochars with higher surface area and micropore volume, allowing it to be more suitable for organic contaminants sorption, whereas biochars produced at low temperatures own smaller pore size, lower surface area, and higher oxygen-containing functional groups and are more suitable to remove inorganic contaminants. In the field of water/wastewater treatment, biochar can have extensive application prospects. Biochar have been widely used as an additive/support media during anaerobic digestion and as filter media for the removal of suspended matter, heavy metals and pathogens. Biochar was also tested for its efficiency as a support-based catalyst for the degradation of dyes and recalcitrant contaminants. The current review discusses on the different methods for biochar production and provides an overview of current applications of biochar in wastewater treatment.
  • 1.9K
  • 28 Oct 2020
Topic Review
Integrated Watershed Management
Human activities mostly impact the trend and direction of rainwater, groundwater, and other river basin resources in the watershed in Africa. These activities alter river flows and the quality of usable water supplies at both highlands and lowlands. A watershed is indeed a conserved area of land that collects rain, sleet and snow, and empties or penetrates groundwater sources.
  • 1.9K
  • 26 Jan 2022
Topic Review
Climate Change Education in Finland
The climate change education (CCE) is understood as a component of environmental education and education for sustainable development. Its core concept is CC literacy, which means that students understand the scientific concepts related to CC and the relationships between them, as well as the effects of CC and their own activities on the environment. CCE is multidisciplinary and interdisciplinary. Multidisciplinarity means that knowledge of various individual sciences is needed. Interdisciplinarity, on the other hand, incorporates elements from a variety of disciplines and also integrates environmental, economic, social and political issues.
  • 1.9K
  • 30 Mar 2022
Topic Review
Antigorite
Antigorite is a Mg-rich 1:1 trioctahedral-structured layered silicate mineral of the serpentine group. Antigorite with layered structure can be used as a lubricant and friction reducing material to repair the friction pair of iron agent on line.
  • 1.9K
  • 26 Oct 2020
  • Page
  • of
  • 271
Video Production Service