Topic Review
β-Cyclocitral Marked as Bioactive Compound in Plants
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants’ resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. βCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. 
  • 611
  • 01 Nov 2022
Topic Review
Zoopharmacology
Zoopharmacognosy is the multidisciplinary approach of the self-medication behavior of many kinds of animals. Recent studies showed the presence of antitumoral secondary metabolites in some of the plants employed by animals and their use for the same therapeutic purposes in humans. Other related and sometimes confused term is Zootherapy, which consists on the employment of animal parts and/or their by-products such as toxins, venoms, etc., to treat different human ailments. Therefore, the aim of this work is to provide a brief insight for the use of Zoopharmacology (comprising Zoopharmacognosy and Zootherapy) as new paths to discover drugs studying animal behavior and/or using compounds derived from animals.
  • 695
  • 28 Jun 2021
Topic Review
Zinc and Selenium Mitigate Abiotic Stresses in Plants
Abiotic stress factors are considered a serious threat to various growth parameters of crop plants. Stressors such as drought, salinity, and heavy metals (HMs) hamper the chlorophyll content in plants, resulting in low photosynthesis, hinder the integrity of cell membranes, reduce biomass, and overall growth and development of crops which ultimately results in the sharp decline of crop yield. Under such stressful conditions, various strategies are employed to overcome hazardous effects. Application of Zinc (Zn) or Selenium (Se) in different forms is an effective way to alleviate the abiotic stresses in plants. Zn and Se play a pivotal role in enhancing the chlorophyll level to improve photosynthesis, reducing oxidative stress by limiting reactive oxygen species (ROS) production, controlling HMs absorption by plant roots and their accumulation in the plant body, maintaining homeostasis, and alleviating all the detrimental effects caused by abiotic stress factors.
  • 704
  • 20 Oct 2022
Topic Review
Zeaxanthin and Photoprotection in Plants
Conversion of sunlight into photochemistry by plants depends on photoprotective processes that allow safe use of sunlight over a broad range of environmental conditions. This entry focuses on the universal use by plants of the photoprotector zeaxanthin that is part of a group of three interconvertible leaf carotenoids collectively known as the xanthophyll cycle. We survey the striking plasticity of this photoprotective process in nature that can be fine-tuned to produce a fit for different environments with various combinations of light, temperature, and other factors.
  • 1.3K
  • 25 Dec 2020
Topic Review
YUC in Plant Developmental Processes
The YUC gene family encodes the rate-limiting enzymes in the TAA/YUC pathway, which stands as the primary endogenous auxin biosynthesis pathway in plants. YUC-medicated local auxin biosynthesis is important for establishing auxin gradient within cells/tissues and precisely regulating various major developmental processes such as root development, leaf morphogenesis, and reproductive development. The spatiotemporal expressions of different YUC genes enable function specialization across different plant species.
  • 2.5K
  • 23 Oct 2020
Topic Review
WRKY Transcription Factors
The WRKY gene family is a plant-specific transcription factor (TF) group, playing important roles in many different response pathways of diverse abiotic stresses (drought, saline, alkali, temperature, and ultraviolet radiation, and so forth). In recent years, many studies have explored the role and mechanism of WRKY family members from model plants to agricultural crops and other species. Abiotic stress adversely affects the growth and development of plants.
  • 1.3K
  • 24 Nov 2020
Topic Review
WOX Gene Family
WUSCHEL-related homeobox (WOX) transcription factors (TFs) are well known for their role in plant development but are rarely studied in citrus. CsRAP2.12 and CsHB22 bind to the CsWUS promoter and regulate its activity. CsCYCD3 protein involved in cell proliferation interact with CsWUS protein 
  • 685
  • 17 May 2021
Topic Review
Woody Plant Growth and Development under Elevated CO2
Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing.
  • 350
  • 12 Aug 2022
Topic Review Peer Reviewed
Wooden Additional Floor in Finland
One of the most effective ways to cover real estate development and renovation processes by improving functionality and energy efficiency is wooden additional floor construction. The scattered information is mapped out, organized, and collated on the current state of the art and the benefits of this practice including its different stages, focusing on the case of Finland. The topic is presented in an accessible and understandable discourse for non-technical readers. By highlighting the benefits and opportunities of this sustainable application, it will contribute to increasing the awareness of wooden additional floor construction, which has many advantages, and therefore to gain more widespread use in Finland and other countries.
  • 1.4K
  • 14 Apr 2022
Topic Review
Wolffia Sp. For Space BLSS.
Plants in the genus Wolffia have a cosmopolitan distribution, populating the lentic ecosystems in almost all the continents except the Antarctic and Arctic regions. Wolffia is a genus of plants with 11 species and including both the fastest-growing angiospermand the smallest flowering plants(a). As is the case for other species in the family, plants in the genus Wolffia consist of a single physical unit termed frond, or thallus, and interpreted as a leaf and stem in an embryonic stage of development.
  • 1.1K
  • 28 Sep 2021
  • Page
  • of
  • 103