You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Labia
The labia are part of the female genitalia; they are the major externally visible portions of the vulva. In humans, there are two pairs of labia: the labia majora (or the outer labia) are larger and fattier, while the labia minora are folds of skin between the outer labia. The labia surround and protect the clitoris and the openings of the vagina and the urethra.
  • 26.6K
  • 28 Nov 2022
Topic Review
Large Intestine
The large intestine consists of ascending, transverse, descending, sigmoidal colon and the rectum. The wall of the large intestine can be divided into four anatomically distinct layers (from inner to outer): mucosa, submucosa, muscularis propria (inner circular and outer longitudinal layers), and serosa. Its major physiological functions include absorbing water, moving waste residue down the GI tract, and temporary fecal storage, all of which involve mechanical movement and deformation of the tubular gastrointestinal structure. The biomechanics of the large intestinal tissue plays a key role in those aforementioned physiological functions in both health and disease.  In addition, chronic visceral pain from the colon and rectum has a prominent mechanical component – it is mechanical distension, not heating, pinching, cutting, or inflammation that reliably evokes pain from hollow visceral organs. The structure and function of the large intestine is systematically summarized below with a particular focus on the heterogeneous biomechanical properties at different sub-layers of the intestinal wall.
  • 13.5K
  • 09 Nov 2020
Topic Review
The Cat Mandible
The cat mandible is small and has some peculiarities relative to the dentition (only three incisors, a prominent canine, two premolars and one molar); a conical and horizontally oriented condyle, and a protudent angular process in its ventrocaudal part. Most of the body of the mandible is occupied by the mandibular dental roots and the mandibular canal that protects the neurovascular supply: the inferior alveolar artery and vein, and the inferior alveolar nerve that exits the mandible rostrally as the mental nerves. They irrigate and innervate all the teeth and associated structures such as the lips and gingiva. Tooth roots and the mandibular canal account for up to 70% of the volume of the mandibular body. Consequently, when fractured it is difficult to repair without invading the dental roots or vascular structures.
  • 9.3K
  • 01 Mar 2021
Topic Review
Human Body Segments
The knowledge of human body proportions and segmental properties of limbs, head and trunk is of fundamental importance in biomechanical research. Given that many methods are employed, it is important to know which ones are currently available, which data on human body masses, lengths, center of mass (COM) location, weights and moment of inertia (MOI) are available and which methods are most suitable for specific research purposes. Graphical, optical, x-ray and derived techniques, MRI, laser, thermography, has been employed for in-vivo measurement, while direct measurements involve cadaveric studies with dissection and various methods of acquiring shape and size of body segments.
  • 7.1K
  • 20 Nov 2020
Topic Review
The Subretinal Space of the Eye
The subretinal space is located between the retinal pigment epithelium (RPE) and the photoreceptive cells. The majority of the retina is a delicate matrix of photoreceptive cells and their support network which are responsible for human vision. These cells are separated from the choroid by a layer of pigment epithelium. The RPE has tight junctions, effectively insulating the inside of the retina from systemic circulation; the contents of the retina can then be controlled by transcellular transport.
  • 6.6K
  • 03 May 2025
Topic Review
Vascular Endothelial Growth Factors
Vascular endothelial growth factors (VEGFs) are primary regulators of blood and lymphatic vessels. Hemangiogenic VEGFs (VEGF-A, PlGF, and VEGF-B) target mostly blood vessels, while the lymphangiogenic VEGFs (VEGF-C and VEGF-D) target mostly lymphatic vessels. Blocking VEGF-A is used today to treat several types of cancer (“antiangiogenic therapy”). However, in other diseases, it would be beneficial to do the opposite, namely to increase the activity of VEGFs. For example, VEGF-A could generate new blood vessels to protect from heart disease, and VEGF-C could generate new lymphatics to counteract lymphedema. Clinical trials that tried to stimulate blood vessel growth in ischemic diseases have been disappointing so far, and the first clinical trials targeting the lymphatic vasculature have progressed to phase II. Antiangiogenic drugs targeting VEGF-A such as bevacizumab or aflibercept neutralize the growth factor directly. However, since VEGF-C and VEGF-D are produced as inactive precursors, novel drugs against the lymphangiogenic VEGFs could also target the enzymatic activation of VEGF-C and VEGF-D. Because of the delicate balance between too much and too little vascular growth, a detailed understanding of the activation of the VEGF-C and VEGF-D is needed before such concepts can be converted into safe and efficacious therapies.
  • 6.2K
  • 30 Mar 2021
Topic Review
History of Human Movement Studies
Knowing the genesis of ideas is important to understand why we are studying a topic. This topic review is an historical excursus about the origin of movement studies, following the ideas of Aristotle until positivism. The main ideas at the origin of biomechanical studies are historically reviewed, with special focus on the enlightment era. Key figures at the origin of movement studies were presented, together with the main ideas they introduced, most of which are still at the basis of modern research in the field of biomechanics. The entry can be of interest for all professionals working in the field of human and animal movement studies.
  • 4.7K
  • 29 Mar 2022
Topic Review
Bamboo Node’s Vascular Bundle
The vascular bundle is an important structural unit that determines the growth and properties of bamboo. A high-resolution X-ray microtomography (μCT) was used to observe and reconstruct a three-dimensional (3D) morphometry model of the vascular bundle of the Qiongzhuea tumidinoda node due to its advantages of quick, nondestructive, and accurate testing of plant internal structure.
  • 4.4K
  • 23 Dec 2021
Topic Review
Forensic Facial Comparison
Forensic facial comparison is a human observer-based technique employed in forensic facial identification. Facial identification falls under the broader discipline of facial imaging, and involves the use of visual facial information to assist in person identification. Through the analysis of photographic or video evidence (e.g., CCTV), forensic facial identification is routinely utilized to associate persons of interest to criminal activity in a judicial context. The recommended approach to forensic facial comparison is facial examination by morphological analysis, whereby a facial feature list is used to analyze, compare, and evaluate visible facial features between a target image and a potential matching image. This process is then validated by a second analyst. Forensic facial comparison, and its broader discipline of facial identification, should not be confused with automated facial recognition technology or the innate psychological process of facial recognition.
  • 4.2K
  • 13 Dec 2021
Topic Review
Biomechanical Factors in Track and Field Sprint Start
In athletics sprint events, the block start performance can be fundamental to the outcome of a race. Several biomechanical determinants of sprinters have been identified. In the “Set” position, an anthropometry-driven block setting facilitating the hip extension and a rear leg contribution should be encouraged. At the push-off, a rapid extension of both hips and greater force production seems to be important. After block exiting, shorter flight times and greater propulsive forces are the main features of best sprinters. 
  • 4.2K
  • 13 Apr 2022
Topic Review
ECM decellularization methods
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. We recently published an overview of the most common methods used to obtain the dECM from specific tissues[1]. Here we provide a summary from that report as a helpful guide for future research development.
  • 3.8K
  • 25 Aug 2020
Topic Review
Corneal Sensory Nerves
The cornea is an avascular connective tissue that is crucial, not only as the primary barrier of the eye but also as a proper transparent refractive structure. Corneal transparency is necessary for vision and is the result of several factors, including its highly organized structure, the physiology of its few cellular components, the absence of blood and lymphatic vessels in healthy conditions, the tightly controlled hydration state, and the lack of myelinated nerves, among others. The cornea is supplied by both sensory and autonomic nerves, being one of the most densely innervated tissues in the body. Corneal innervation is anatomically organized into four levels ranging from the nerve trunks in the corneal stroma to the nerve terminals in the epithelium. Electrophysiological recordings of corneal sensory nerve fibers have revealed the existence of three different functional types of sensory neurons that are classified into mechanonociceptors, polymodal nociceptors and cold thermoreceptors depending on the modality of stimuli by which they are activated. The impulse discharge is conducted by these neurons to the central nervous system, where sensory input is processed to finally evoke a sensation and to regulate ocular protective functions, such as tearing and blinking.
  • 3.5K
  • 21 Mar 2022
Topic Review
Spinal-Deformities and Advancement in Corrective-Orthoses
Spinal deformity is an abnormality in the spinal curves and can seriously affect the activities of daily life. The conventional way to treat spinal deformities, such as scoliosis, kyphosis, and spondylolisthesis, is to use spinal orthoses (braces). Braces have been used for centuries to apply corrective forces to the spine to treat spinal deformities or to stabilize the spine during postoperative rehabilitation. Braces have not modernized with advancements in technology, and very few braces are equipped with smart sensory design and active actuation. There is a need to enable the orthotists, ergonomics practitioners, and developers to incorporate new technologies into the passive field of bracing. 
  • 3.1K
  • 30 Jan 2021
Topic Review
Bisphenols
Bisphenols (BPs), and especially bisphenol A (BPA), are known endocrine disruptors (EDCs), capable of interfering with estrogen and androgen activities, as well as being suspected of other health outcomes.
  • 3.0K
  • 28 Oct 2020
Topic Review
Vertebrate Cutaneous Sensory Corpuscles
Vertebrate cutaneous sensory corpuscles are specialized sensory nerve formations located in the skin of all vertebrates and responsible for tactile sensation. Functionally, they are mechanoreceptors transducing external mechanical stimuli into electrical signals which will be later led to the Central Nervous System. The afferent innervation of vertebrate skin is supplied by nerve fibers (Aβ, Aδ, C) which are originated from peripheral neurons localized in the dorsal root ganglia (DRG). Aβ nerve fibers end at the dermis level forming several morphotypes of sensory corpuscles with capacity of detecting different stimuli: Merkel cell–neurite complexes, Ruffini corpuscles, Meissner’s corpuscles and Pacinian corpuscles are present in the glabrous skin; while pilo-neural complexes are found in hairy skin. The structure of sensory corpuscles is formed by an axon, non-myelinating Schwann-like cells, a capsule of endoneurial and/or perineurial origin and extracelullar matrix molecules.  The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin through Aβ nerve fibers. Furthermore, low-threshold mechanoreceptors associated with Aδ and C nerve fibers have been identified in hairy skin. The process of mechanotransduction requires the conversion of a mechanical stimulus into electrical signals (action potentials) through the activation of mechanosensible ion channels present both in the axon and the periaxonal cells of sensory corpuscles (i.e., Schwann-, endoneurial- and perineurial-related cells). Most of those putative ion channels belong to the degenerin/epithelial sodium channel (especially the family of acid-sensing ion channels), the transient receptor potential channel superfamilies, and the Piezo family.
  • 2.8K
  • 07 Sep 2020
Topic Review
Congenital Malformations in Sea Turtles
Congenital malformations can lead to embryonic mortality in many species, and sea turtles are no exception. Genetic and/or environmental alterations occur during early development in the embryo, and may produce aberrant phenotypes, many of which are incompatible with life. Causes of malformations are multifactorial; genetic factors may include mutations, chromosomal aberrations, and inbreeding effects, whereas non-genetic factors may include nutrition, hyperthermia, low moisture, radiation, and contamination. It is possible to monitor and control some of these factors (such as temperature and humidity) in nesting beaches, and toxic compounds in feeding areas, which can be transferred to the embryo through their lipophilic properties.
  • 2.7K
  • 22 Feb 2021
Topic Review
Lyme Disease
Lyme disease, or Lyme borreliosis, is an increasingly prevalent illness caused by several bacteria in the Borrelia genus. Lyme disease is an increasingly common bacterial illness that exists throughout the world. Current diagnostic methods for Lyme disease are ineffective at detecting the illness during its early stages - when it is easiest to treat; thus, the improvement of Lyme diagnostics is a popular area of research in many scientific fields.
  • 2.7K
  • 16 Dec 2020
Topic Review
The Subconjunctival Space of the Eye
The subconjunctival space is the hydrophilic, fluid-filled space between the conjunctiva and the sclera. Additionally, the subconjunctival space has access to all the blood vessels found in the conjunctiva, which can help to further distribute substances throughout the whole eye. The subconjunctival space is located superior to the cornea and optimally located to distribute drugs to several different parts of the eye through minimally invasive means while limiting the development of scar tissue.
  • 2.6K
  • 05 May 2022
Topic Review
Blood-Brain Barrier: Functionalised Chitosan
The major impediment to the delivery of therapeutics to the brain is the presence of the blood-brain barrier (BBB). The BBB allows for the entrance of essential nutrients while excluding harmful substances, including most therapeutic agents; hence, brain disorders, especially tumors, are very difficult to treat. Chitosan is a well-researched polymer that offers advantageous biological and chemical properties, such as mucoadhesion and ease of functionalization. Chitosan-based nanocarriers (CsNCs) establish ionic interactions with the endothelial cells, facilitating the crossing of drugs through the BBB by adsorptive mediated transcytosis. This process is further enhanced by modifications of the structure of chitosan, owing to the presence of reactive amino and hydroxyl groups. Finally, by permanently binding ligands or molecules, such as antibodies or lipids, CsNCs have shown a boosted passage through the BBB, in both in vivo and in vitro studies which will be discussed in this review.
  • 2.3K
  • 21 Nov 2020
Topic Review
Anatomical Variations of the External Jugular Vein
The external jugular vein (EJV) descends superficially to the sternocleidomastoid muscle and drains into the subclavian vein after penetrating the deep cervical fascia. Numerous morphological possibilities of the EJV could occur and should be carefully interpreted. These include fenestrations and double fenestrations, true or false duplications, triplication, absence, aberrant origin or course, bifurcation, or the internal jugular vein termination of the EJV. 
  • 2.2K
  • 31 Mar 2023
  • Page
  • of
  • 6
Academic Video Service