Your browser does not fully support modern features. Please upgrade for a smoother experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
MIF and D-DT/MIF-2 in Infections
Macrophage migration inhibitory factor (MIF) and its homolog, D-dopachrome tautomerase (D-DT), are cytokines that play critical roles in the immune response to various infectious diseases. The role of MIF in different types of infections is controversial, as it has either a protective function or a host damage-enhancing function depending on the pathogen. Depending on the specific role of MIF, different therapeutic options for MIF-targeting drugs arise. Human MIF-neutralizing antibodies, anti-parasite MIF antibodies, small molecule MIF inhibitors or MIF-blocking peptides, as well as the administration of exogenous MIF or MIF activity-augmenting small molecules have potential therapeutic applications and need to be further explored in the future. In addition, MIF has been shown to be a potential biomarker and therapeutic target in sepsis. Further research is needed to unravel the complexity of MIF and D-DT in infectious diseases and to develop personalized therapeutic approaches targeting these cytokines. Overall, a comprehensive understanding of the role of MIF and D-DT in infections could lead to new strategies for the diagnosis, treatment, and management of infectious diseases.
  • 1.0K
  • 29 Dec 2023
Topic Review
Multiple Myeloma (MM)
Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of bone marrow (BM) clonal plasma cells, which are strictly dependent on the microenvironment.
  • 1.0K
  • 27 Apr 2021
Topic Review
Licorice Extracts Pharmacological Interventions for COVID-19
In order to contribute to the mitigation of COVID-19 symptoms, the pharmaceutical industry aims to develop antiviral drugs to inhibit the SARS-CoV-2 replication and produce anti-inflammatory medications that will inhibit the acute respiratory distress syndrome (ARDS), which is the primary cause of mortality among the COVID-19 patients.  Licorice (Glycyrrhiza glabra), which belongs to the shrub category, whose phytochemicals have shown antiviral and anti-inflammatory properties through previous studies. Phytochemicals from many other medicinal plants are also known to have similar properties, such as Sambucus nigarac, Desmodium canadense, Lamiaceae family, Asteraceae, Geraniaceae, etc. but licorice has explicitly been suggested due to its: (i) considerable antiviral property against several viruses, including SARS-CoV, (ii) strong anti-inflammatory property, which has been observed in many rat model studies, (iii) autophagy-enhancing mechanism, (iv) established use in Chinese and Indian Ayurvedic medicines, and (v) wide distribution.
  • 1.0K
  • 07 Dec 2021
Topic Review
Autophagy and Flavonoids
Autophagy, which is a conserved biological process and essential mechanism in maintaining homeostasis and metabolic balance, enables cells to degrade cytoplasmic constituents through lysosomes, recycle nutrients, and survive during starvation. Autophagy exerts an anticarcinogenic role in normal cells and inhibits the malignant transformation of cells. On the other hand, aberrations in autophagy are involved in gene derangements, cell metabolism, the process of tumor immune surveillance, invasion and metastasis, and tumor drug-resistance. Therefore, autophagy-targeted drugs may function as anti-tumor agents. Accumulating evidence suggests that flavonoids have anticarcinogenic properties, including those relating to cellular proliferation inhibition, the induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, the impairment of cell migration, invasion, tumor angiogenesis, and the reduction of multidrug resistance in tumor cells. Flavonoids, which are a group of natural polyphenolic compounds characterized by multiple targets that participate in multiple pathways, have been widely studied in different models for autophagy modulation. However, flavonoid-induced autophagy commonly interacts with other mechanisms, comprehensively influencing the anticancer effect. Accordingly, targeted autophagy may become the core mechanism of flavonoids in the treatment of tumors.
  • 1.0K
  • 05 Feb 2021
Topic Review
Mammary Stem Cell
Normal mammary epithelial cells are heterogeneous and organized in hierarchical fashion, in which the mammary stem cells (MaSC) lie at the apex with regenerative capacity as well as plasticity.
  • 1.0K
  • 31 Mar 2021
Topic Review
Anti-Inflammatory Properties Anthocyanins in Edible Flowers
The word ‘anthocyanin’ derives from two Greek words: anthos, which means flowers, and kyanos, which means dark blue. Anthocyanins are secondary metabolites in land plants that contribute to the color of leaves and flowers. These pigments are primary blue, red, and purple. They are synthesized via the flavonoid pathway, which is part of the general phenylpropanoid pathway.
  • 1.0K
  • 01 Apr 2022
Topic Review
Anticancer Mechanisms of Natural and Synthetic Chalcones
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
  • 1.0K
  • 14 Oct 2022
Topic Review
Leptin and Its Involvement in Pathology
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, it is also synthesized in other organs, where leptin receptors are expressed.
  • 1.0K
  • 14 Feb 2023
Topic Review
The Role of Epigenetics in Type 2 Diabetes
Type 2 diabetes (T2D) is characterised by high levels of blood glucose resulting from a combination of factors, including insulin resistance, a decrease in insulin secretion, and an increase in glucose production by the liver. Epigenetic changes have been shown to influence these factors through changes in changes in gene expression patterns.
  • 1.0K
  • 11 Jul 2023
Topic Review
ER Stress with Rhinologic Diseases
The endoplasmic reticulum (ER) stress has already been correlated with various diseases through many studies. In the rhinologic field, the relationship between ER stress in obstructive sleep apnea (OSA) associated with chronic intermittent hypoxia (CIH) and inflammatory diseases such as chronic rhinosimusitis (CRS) or allergic rhinitis (AR) has been relatively studied. The role of ER stress in the development of AR is related to Type 2 allergic immune responses, similar to that in asthma, and some are also related to non-Th2 immune responses. ER stress may be involved in various pathways that cause chronic inflammation in CRS. CIH—the main pathological mechanism of OSA—induces ER stress that impacts the heart, brain, and liver to increase OSA-related morbidity. Therefore, targeting the pathophysiological mechanisms in diseases such as AR, CRS, or OSA by appropriately managing ER stress could be utilized as new therapeutic strategy.
  • 1.0K
  • 26 Oct 2020
Topic Review
Clinical Applications of Short Non-Coding RNA-Based Therapies
RNA therapies have demonstrated clinical potential for both the treatment of cancer and other pathologies. Therapeutic delivery and resulting adverse events remain significant roadblocks in implementing many of these drugs into clinical practice, but the FDA approval of three Alnylam Pharmaceuticals’ small interfering RNAs (siRNAs) therapies has been a milestone in developing therapies tailored to disease-driving target genes. While it seems that RNAs can be administered “naked” in closed-compartment organs such as eyes and lungs, more research is needed for systemic administration. Lipid nanoparticles represent a promising delivery method, but some challenges remain because of their potential to elicit an immune response, relatively low circulation times, and relatively large size. The use of GalNAc for the delivery and targeting of siRNAs has made significant progress, but delivery systems targeted to organs other than the liver would broaden the range of diseases that could be treated with RNA therapies.
  • 1.0K
  • 07 Apr 2022
Topic Review
Thromboembolic complications of SARS-CoV-2
Covid-19 has the potential to cause severe damage to many tissues, including systemic inflammatory response syndrome (SIRS), acute respiratory disease syndrome (ARDS), multiorgan involvement, and shock. One of the most feared complications are thromboembolic events which lead to severe clinical phenotypes: worsening of pulmonary conditions, oxygen desaturation, and acute respiratory distress. Management choices should be considered according to the critical or chronic setting.                             Main pathophysiological mechanisms underlying thrombosis from Covid-19 are discussed, including metabolic derangements and hormonal factors.
  • 1.0K
  • 17 Jun 2021
Topic Review
The Insulin-like Growth Factor System and Colorectal Cancer
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance.
  • 1.0K
  • 24 Oct 2022
Topic Review
NETosis in Parasitic Infections
Neutrophils are the key players in the innate immune system, being weaponized with numerous strategies to eliminate pathogens. The production of extracellular traps is one of the effector mechanisms operated by neutrophils in a process called NETosis. Neutrophil extracellular traps (NETs) are complex webs of extracellular DNA studded with histones and cytoplasmic granular proteins.
  • 1.0K
  • 24 May 2023
Topic Review
Exosomes in Designing Drug Delivery Systems
Exosomes are a subpopulation of extravascular vesicles with a diameter of 30–150 nm. They are cellular-communication mediators, often reaching very distant organism tissues. Information is transferred by exosomal cargo, composed of a wide variety of macromolecules such as nucleic acids, proteins, and lipids. Exosomes possess natural specific cell targeting properties that are desirable in designing targeted macromolecules (DNA and RNA) and drug delivery systems (doxorubicin, paclitaxel, and taxol). In this context, exosomes can be defined as bio-derived drug transporting and protecting devices for the treatment of bacterial (toxoplasmosis and salmonellosis), viral (AIDS and hepatitis B), and cancer (lung, pancreatic, colon, brain, and breast) diseases. Extensive research proves that exosomes’ natural cargo can double-act, both increasing and decreasing the disease severity. In this case, the exosomes need to be prepared, namely, their origin and their cargo need to be screened and known. Thus, appropriate methods for intact and price-effective exosome isolation are needed with further exosome properties description. Among many utilized isolation methods, the most common are ultracentrifugation, polymer-based precipitation, and affinity precipitation-isolation systems, but novel microfluidic methods compromising high efficacy and purity are being developed. 
  • 1.0K
  • 19 Dec 2022
Topic Review
The Mutant p53 Secretome
p53 suppresses tumorigenesis by activating a plethora of effector pathways. While most of these operate primarily inside of cells to limit proliferation and survival of incipient cancer cells, many extend to the extracellular space. In particular, p53 controls expression and secretion of numerous extracellular factors that are either soluble or contained within extracellular vesicles such as exosomes. As part of the cellular secretome, they execute key roles in cell-cell communication and extracellular matrix remodeling. Mutations in the p53-encoding TP53 gene are the most frequent genetic alterations in cancer cells, and therefore, have profound impact on the composition of the tumor cell secretome.
  • 1.0K
  • 10 Jun 2021
Topic Review
Acid-Sensing Ion Channels and Mechanosensation
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels, which can be activated by a drop in extracellular pH below 7.0 and triggered by nonproton ligands during physiological pH levels.
  • 1.0K
  • 12 May 2021
Topic Review
Mitochondria and Aging
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Biological aging is characterized by buildup of intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation (‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate age-related declines in mitochondria and organelles involved in quality control, repair, and recycling are therefore highly desirable.
  • 1.0K
  • 29 Mar 2022
Topic Review
Multiplex Detection of Infectious Diseases on Microfluidic Platforms
Infectious diseases contribute significantly to the global disease burden. Sensitive and accurate screening methods are some of the most effective means of identifying sources of infection and controlling infectivity. Conventional detecting strategies such as quantitative polymerase chain reaction (qPCR), DNA sequencing, and mass spectrometry typically require bulky equipment and well-trained personnel. Therefore, mass screening of a large population using conventional strategies during pandemic periods often requires additional manpower, resources, and time, which cannot be guaranteed in resource-limited settings. Emerging microfluidic technologies have shown the potential to replace conventional methods in performing point-of-care detection because they are automated, miniaturized, and integrated. By exploiting the spatial separation of detection sites, microfluidic platforms can enable the multiplex detection of infectious diseases to reduce the possibility of misdiagnosis and incomplete diagnosis of infectious diseases with similar symptoms. 
  • 1.0K
  • 27 Apr 2023
Topic Review
Biomedical Applications of Polyoxometalates Environmental
Polyoxometalates (POMs) are clusters of units of oxoanions of transition metals, such as Mo, W, V and Nb, that can be formed upon acidification of neutral solutions. Once formed, some POMs have shown to persist in solution, even in the neutral and basic pH range. These inorganic clusters, amenable of a variety of structures, have been studied in environmental, chemical, and industrial fields, having applications in catalysis and macromolecular crystallography, as well as applications in biomedicine, such as cancer, bacterial and viral infections, among others.
  • 1.0K
  • 14 Jan 2022
  • Page
  • of
  • 133
Academic Video Service