You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Remote Monitoring of Vital Signs
Techniques for noncontact measurement of vital signs using camera imaging technologies have been attracting increasing attention. For noncontact physiological assessments, computer vision-based methods appear to be an advantageous approach that could be robust, hygienic, reliable, safe, cost effective and suitable for long distance and long-term monitoring. In addition, video techniques allow measurements from multiple individuals opportunistically and simultaneously in groups. This paper aims to explore the progress of the technology from controlled clinical scenarios with fixed monitoring installations and controlled lighting, towards uncontrolled environments, crowds and moving sensor platforms. We focus on the diversity of applications and scenarios being studied in this topic. From this review it emerges that automatic multiple regions of interest (ROIs) selection, removal of noise artefacts caused by both illumination variations and motion artefacts, simultaneous multiple person monitoring, long distance detection, multi-camera fusion and accepted publicly available datasets are topics that still require research to enable the technology to mature into many real-world applications.
  • 2.5K
  • 30 Oct 2020
Topic Review
Lead (Pb)
Human exposure to lead can occur in a variety of ways, all of which involve exposure to potentially toxic elements as environmental pollutants. Lead enters the body via ingestion and inhalation from sources such as soil, food, lead dust and lead in products of everyday use and in the workplace. The aim of this review is to describe the toxic effects of lead on the human body from conception to adulthood, and to review the situation regarding lead toxicity in Poland. Results: Pb is very dangerous when it is absorbed and accumulates in the main organs of the body, where it can cause a range of symptoms that vary from person to person, the time of exposure and dose. Lead in adults can cause an increase in blood pressure, slow nerve conduction, fatigue, mood swings, drowsiness, impaired concentration, fertility disorders, decreased sex drive, headaches, constipation and, in severe cases, encephalopathy or death. Conclusions: Exposure to lead in Poland remains an important public health problem. This review will cover the range of lead exposures, from mild to heavy. Public health interventions and policies also are needed to reduce occupational and environmental exposure to this element.
  • 2.5K
  • 05 Nov 2020
Topic Review
Traditional Chinese Medicines Brought from China to Japan
Japanese Kampo medicine has its origin in ancient Chinese medicine. In 742, a Tang Dynasty monk named Jianzhen (Ganjin) was invited by Japanese clerics to visit Japan and teach commandments in Buddhism. Because of the dangers of the voyage and also other obstacles, he took 11 years to reach Japan on the sixth voyage and he was blind when he arrived in Japan. He was the first person in China to go to Japan to establish the Buddhism commandments, and he was also the first person in Japan to directly teach traditional Chinese medicine.
  • 2.5K
  • 03 Nov 2022
Topic Review
Bifunctional Beta-Lactam Antibiotics
The molecular structure of β-lactam antibiotics can be modified either to introduce another β-lactam ring (the pharmacophore conferring bactericidal activities to these molecules), or to add other pharmacophores that modify their pharmacological properties and spectrum of action.
  • 2.5K
  • 07 Feb 2021
Topic Review
Structure and Physicochemical Properties of Konjac Glucomannan
Konjac glucomannan (KGM), can not only be applied as a food additive, which greatly improves the taste and flavor of food and extends the shelf life of food but also occupies an important role in T2DM (Type 2 Diabetes Mellitus). KGM can extend gastric emptying time, increase satiety, and promote liver glycogen synthesis, and also has the potential to improve intestinal flora and the metabolic system through a variety of molecular pathways in order to positively regulate oxidative stress and immune inflammation, and protect the liver and kidneys.
  • 2.5K
  • 01 Feb 2023
Topic Review
Hybrid Drugs
Hybrid drugs, also termed “single molecule multiple targets” or “multiple ligands”, can be referred to as the most sophisticated form of combination therapy. They are designed utilizing molecular hybridization—a strategy of rational drug design which enables the fusing of one or more bioactive compounds or their pharmacophoric subunits into one molecule, which represents the preselected, desired features of original drugs. Obviously, connected entities should retain affinity to their specific targets and provide a superior therapeutic effect by amplification or exerting multifactorial biological activity. Such a single hybrid agent can modulate multiple targets involved in proliferation and efficiently destroy cancer cells.
  • 2.5K
  • 25 May 2021
Topic Review Peer Reviewed
Ionic Liquids in Drug Delivery
Ionic liquids (ILs) are molten salts composed of a large organic cation and an organic/inorganic anion. The large dimensions of their ions lead to charge dispersion, which makes difficult the formation of a regular crystalline structure. Due to their unique properties, ILs have been applied in the crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems.
  • 2.5K
  • 13 Apr 2022
Topic Review
Zeolite/Pharmaceuticals System
Zeolites belong to aluminosilicate microporous solids, with strong and diverse catalytic activity, which makes them applicable in almost every kind of industrial process, particularly thanks to their eco-friendly profile. Another crucial characteristic of zeolites is their tremendous adsorption capability. Therefore, it is self-evident that the widespread use of zeolites is in environmental protection, based primarily on the adsorption capacity of substances potentially harmful to the environment, such as pharmaceuticals, pesticides, or other industry pollutants. On the other hand, zeolites are also recognized as drug delivery systems (DDS) carriers for numerous pharmacologically active agents. The enhanced bioactive ability of DDS zeolite as a drug carrying nanoplatform is confirmed, making this system more specific and efficient, compared to the drug itself. These two applications of zeolite, in fact, illustrate the importance of (ir)reversibility of the adsorption process. 
  • 2.4K
  • 11 Aug 2022
Topic Review
Blood-Brain Barrier
The blood-brain barrier (BBB) limits pharmacotherapy of several brain disorders. In addition to structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB, and thus, a primary hindrance to drug delivery into the brain.
  • 2.4K
  • 26 Oct 2020
Topic Review
Biogenic Synthesis
Recent advances in the research of therapeutic plant and nanotechnology has been on the increase. Significantly in the green synthesis of metallic nanoparticles (MNPs) because of its numerous gains over conventional methods. Biological conventions for synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) are through the use of nature’s biolaboratory such as plant, microorganisms, alga, carbohydrates and biopolymers . Medicinal plant is a choice natural reserve for different phytochemicals in the synthesis of biogenic MNPs. Thus, they are deemed a green, sustainable, and efficient route for the biosynthesis of MNPs owing to their benign and environmentally friendly nature. In this review we discussed the mode of synthesis strategies and the proposed mechanism of biocidal antibacterial activity of MNPs.  The focus is on the synthesis and possible antibacterial mechanism of specific MNPs such as silver (Ag), gold (Au) and their bimetallic synthesized from plants. This is to give a synergistic view of the efficacy of plant mediated MNPs for the prospect of antibiotic development.
  • 2.4K
  • 17 Nov 2020
Topic Review
Silphium
The chemical composition of three Silphium species in the aspect of the possibility of their use for various purposes has been evaluated. The plant material of three Silphium species (S. perfoliatum, S. trifoliatum and S. integrifolium) was acquired from cultivation located in eastern Poland. The vegetative propagating material consisted of seeds and rhizomes. Content of protein (up to 22.9% in leaves of S. perfoliatum), amino acids (aspartic acid—up to 12.0%, glutamic acid—up to 9.5%, and leucine—up to 9.4%), fat (up to 4.2% in inflorescences of S. perfoliatum), cellulose (up to 42.9% in stems of S. trifoliatum), water-soluble sugars (up to 26.7% in rhizomes of S. perfoliatum) and mineral substances (ash up to 20.9% in stems of S. integrifolium, with significant levels of elements such as K, Ca, Mg, Fe, Mn) in the tested Silphium species can be an important criterion determining a positive evaluation of these plants as sources of alternative raw materials. The conducted research is meant to draw attention to the possibility of use of the biomass of three Silphium species as a potential source of ecological and renewable raw material for food, pharmaceuticals, feed and possibly also for energy generation purposes.
  • 2.4K
  • 02 Nov 2020
Topic Review
Amorphization of Poorly Water-Soluble Drugs
Amorphization technology has been the subject of continuous attention in the pharmaceutical industry, as a means to enhance the solubility of poorly water-soluble drugs. Being in a high energy state, amorphous formulations generally display significantly increased apparent solubility as compared to their crystalline counterparts, which may allow them to generate a supersaturated state in the gastrointestinal tract and in turn, improve the bioavailability. Conventionally, hydrophilic polymers have been used as carriers, in which the amorphous drugs were dispersed and stabilized to form polymeric amorphous solid dispersions. However, the technique had its limitations, some of which include the need for a large number of carriers, the tendency to recrystallize during storage, and the possibility of thermal decomposition of the drug during preparation. Therefore, emerging amorphization technologies have focused on the investigation of novel amorphous-stabilizing carriers and preparation methods that can improve the drug loading and the degree of amorphization. 
  • 2.4K
  • 08 Sep 2021
Topic Review
Pathophysiology of Diabetic Foot Ulcers
One of the most significant challenges of diabetes health care is diabetic foot ulcers (DFU). DFUs are more challenging to cure, and this is particularly true for people who already have a compromised immune system. Pathogenic bacteria and fungi are becoming more resistant to antibiotics, so they may be unable to fight microbial infections at the wound site with the antibiotics.
  • 2.4K
  • 28 Jul 2022
Topic Review
Fucoidan Structure
Fucoidans are complex polysaccharides derived from brown seaweeds. The search for novel and natural bioproduct derived drugs (due to toxicity issues associated with chemotherapeutic drugs) has led to an extensive study of fucoidan, as it has several bioactive characteristics. Among the various bioactivities of fucoidan, antidiabetic and anticancer properties have received extensive attention. However, the elucidation of the fucoidan structure and its biological activity is still vague. In addition, research has suggested that there is a link between diabetes and cancer; however, limited data exist where dual chemotherapeutic efforts are elucidated. This review provides an overview of glucose metabolism, which is the central process involved in the progression of both diseases. Potential therapeutic targets are highlighted and the relevance of fucoidan and its derivatives as a candidate for both cancer and diabetes therapy is shown.
  • 2.4K
  • 04 Feb 2021
Topic Review
The Mechanism-Based Inactivation of CYP3A4 by Ritonavir
Ritonavir is the most potent cytochrome P450 (CYP) 3A4 inhibitor in clinical use and is often applied as a booster for drugs with low oral bioavailability due to CYP3A4-mediated biotransformation, as in the treatment of HIV (e.g., lopinavir/ritonavir) and more recently COVID-19 (Paxlovid or nirmatrelvir/ritonavir). Ritonavir is clearly a potent mechanism-based inactivator, which irreversibly blocks CYP3A4. 
  • 2.4K
  • 19 Sep 2022
Topic Review
PDE4 as Therapeutic Targets in Different Diseases
Cyclic nucleotides (cAMP, cGMP) play a major role in normal and pathologic signaling. Beyond receptors, cyclic nucleotide phosphodiesterases; (PDEs) rapidly convert the cyclic nucleotide in its respective 5′-nucleotide to control intracellular cAMP and/or cGMP levels to maintain a normal physiological state. However, in many pathologies, dysregulations of various PDEs (PDE1-PDE11) contribute mainly to organs and tissue failures related to uncontrolled phosphorylation cascade. Among these, PDE4 represents the greatest family, since it is constituted by 4 genes with multiple variants differently distributed at tissue, cellular and subcellular levels, allowing different fine-tuned regulations.
  • 2.4K
  • 11 Oct 2022
Topic Review
Therapeutic Proteins
Reinventing approved therapeutic proteins for a new dose, a new formulation, a new route of administration, an improved safety profile, a new indication, or a new conjugate with a drug or a radioactive source is a creative approach to benefit from the billions spent on developing new therapeutic proteins. These new opportunities were created only recently with the arrival of Artificial Intelligence (AI)/Machine Learning (ML) tools and high throughput screening technologies. Furthermore, the complex nature of proteins offers mining opportunities that are not possible with chemical drugs; bringing in newer therapies without spending billions makes this path highly lucrative financially while serving the dire needs of humanity. 
  • 2.4K
  • 15 May 2023
Topic Review
Analytical Assessment of Biosimilars
The analytical assessment includes testing physicochemical and functional attributes to establish a claim of biosimilarity. How closely a biosimilar candidate should match the reference product will remain questionable since a reference product is approved based on whatever quality attributes it presents; a biosimilar candidate, on the other hand, must match these quality attributes, even if the reference product’s attributes are not the most desirable.
  • 2.4K
  • 27 Apr 2022
Topic Review
Extraction, Isolation and Characterization of Bioactive Compounds
Diverse medicinal plants such as those from the genus Artemisia have been employed globally for centuries by individuals belonging to different cultures. Universally, Artemisia species have been used to remedy various maladies that range from simple fevers to malaria. 
  • 2.3K
  • 03 Dec 2021
Topic Review
Fused Deposition Modeling and 3D Printing
The operating principle of 3D printing is the layer-by-layer fabrication of objects, using a digital design. Before printing, a 3D digital model of the object is created with a computer-aided design (CAD) software, offering the ability of designing various complex final structures. The structure is then “sliced” in 2D layers which are printed one by one, on top of each other, in order to finally afford the 3D object. Stereolithography, which is based on the selective photo-polymerization of a liquid resin, was the first technique developed for 3D printing technology. Two other methods have mainly been employed for printing polysaccharides: fused deposition modeling (FDM), mostly for cellulose and its derivatives, owing to the good processing window between their glass transition temperature and the onset of thermal degradation temperature; and extrusion-based printing, which is appropriate for hydrogels.
  • 2.3K
  • 11 Feb 2022
  • Page
  • of
  • 54
Academic Video Service