You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Spinal-Deformities and Advancement in Corrective-Orthoses
Spinal deformity is an abnormality in the spinal curves and can seriously affect the activities of daily life. The conventional way to treat spinal deformities, such as scoliosis, kyphosis, and spondylolisthesis, is to use spinal orthoses (braces). Braces have been used for centuries to apply corrective forces to the spine to treat spinal deformities or to stabilize the spine during postoperative rehabilitation. Braces have not modernized with advancements in technology, and very few braces are equipped with smart sensory design and active actuation. There is a need to enable the orthotists, ergonomics practitioners, and developers to incorporate new technologies into the passive field of bracing. 
  • 3.1K
  • 30 Jan 2021
Topic Review
Type I Collagen
Type I collagen, the predominant protein of vertebrates, assembles into fibrils that orchestrate the form and function of bone, tendon, skin, and other tissues. Collagen plays roles in hemostasis, wound healing, angiogenesis, and biomineralization, and its dysfunction contributes to fibrosis, atherosclerosis, cancer metastasis, and brittle bone disease.
  • 3.1K
  • 26 Jan 2021
Topic Review
Measuring Biosignals with Single Circuit Boards
To measure biosignals constantly, using textile-integrated or even textile-based electrodes and miniaturized electronics, is ideal to provide maximum comfort for patients or athletes during monitoring. While in former times, this was usually solved by integrating specialized electronics into garments, either connected to a handheld computer or including a wireless data transfer option, nowadays increasingly smaller single circuit boards are available, e.g., single-board computers such as Raspberry Pi or microcontrollers such as Arduino, in various shapes and dimensions.
  • 3.0K
  • 01 Mar 2022
Topic Review
Continuum Robots for Medical Applications
Traditional rigid robot application in the medical field is limited due to the limited degrees of freedom caused by their material and structure. Inspired by trunk, tentacles, and snakes, continuum robot (CR) could traverse confined space, manipulate objects in complex environment, and conform to curvilinear paths in space. The continuum robot has broad prospect in surgery due to its high dexterity, which can reach circuitous areas of the body and perform precision surgery. Recently, many efforts have been done by researchers to improve the design and actuation methods of continuum robots. Several continuum robots have been applied in clinic surgical interventions and demonstrated superiorities to conventional rigid-link robots.
  • 3.0K
  • 13 Jan 2021
Topic Review
Photolyase
Photolyase is a protein that has various functions, among which is the repair of DNA damaged from exposure to UV rays from the sun.
  • 3.0K
  • 30 Sep 2022
Topic Review
Biomechanical Energy Harvesting from the Human Body
Energy harvesters serve as continuous and long-lasting sources of energy that can be integrated into wearable and implantable sensors and biomedical devices. Biomechanical energy is one of the largest categories and one of the most utilized among all other energy sources.
  • 2.9K
  • 28 Nov 2022
Topic Review
Non-Enzymatic Electrochemical Sensing
Simultaneous detection of analytes that together exist in biological organisms necessitates the development of effective and efficient non enzymatic electrodes in sensing. In this regard, development of sensing elements for detecting glucose and hydrogen peroxide (H2O2) is significant. The non-enzymatic sensing is more economical and has longer lifetime than enzymatic electrochemical sensing, but it has several drawbacks such as high working potential, slow electrode kinetics, poisoning from intermediate species and weak sensing parameters. Here is a comprehensive overview of the recent developments in non-enzymatic glucose and H2O2 (NEGH) sensing, by focusing mainly on sensing performance, electro catalytic mechanism, morphology and design of electrode materials. A comparison of glucose and H2O2 sensing parameters using same electrode materials is outlined to predict the efficient sensing performances of advanced nanomaterials with metal/metal oxides and hybrid metallic nanocomposites.
  • 2.9K
  • 24 Nov 2020
Topic Review
DNA-Based Biosensors
Due to superior biocompatibility, thermal stability, and alternative functionalization, deoxyribonucleic acid (DNA) is becoming a fascinating biological material used for biosensing. It is widely acknowledged that DNA and its assembly structure can be applied for detecting specific targets, including nucleic acids, proteins, metal ions, and small biological molecules. With the development of DNA nanotechnology, dynamic networks based on DNA hybridization can be used to amplify the signals of biosensors.
  • 2.9K
  • 07 Apr 2022
Topic Review
Advanced Bioengineered Skin Equivalents
The formation of severe scars still represents the result of the closure process of extended and deep skin wounds. To address this issue, different bioengineered skin substitutes have been developed but a general consensus regarding their effectiveness has not been achieved yet. It will be shown that bioengineered skin substitutes, although representing a valid alternative to autografting, induce skin cells in repairing the wound rather than guiding a regeneration process. Repaired skin differs from regenerated skin, showing high contracture, loss of sensitivity, impaired pigmentation and absence of cutaneous adnexa (i.e., hair follicles and sweat glands). This leads to significant mobility and aesthetic concerns, making the development of more effective bioengineered skin models a current need. The objective of this review is to determine the limitations of either commercially available or investigational bioengineered skin substitutes and how advanced skin tissue engineering strategies can be improved in order to completely restore skin functions after severe wounds.
  • 2.9K
  • 30 Jul 2020
Topic Review
Multiphase Flows
Multiphase flows appear in many industrial and environmental applications (dredging, oil industry, mining industry, cement industry, among others), quite often as two-phase flows, either solid/liquid, liquid/liquid or gas/liquid flows. When we speak about multiphase flows we are referring both to flow in channels or pipes or in other process units. In our studies we have been more directed to multiphase flows in pipes. Being able to model and accurately predict the behaviour of such flows and to monitor, as well, the flows themselves, is of high importance to guarantee a stable flow and to optimize energy consumption, by designing adequately the conveying system, without the need to overdimensioning conveying equipment to avoid, for instance, pipe blockage.
  • 2.8K
  • 28 Jan 2021
Topic Review
Advances in Finger Prosthetic Mechanisms
Approximately 70% of the upper extremity amputations refers to partial hand loss with the involvement of one or more fingers. Historically, this type of limb amputation has been addressed adopting simple opposition designs that use the movement of the residual digit for grasping against a fixed device. Nevertheless, in the last few years, technological advances, and the introduction of modern computer-aided tools for the synthesis and functional design of mechanisms have led to the development of smaller, more robust systems that are constantly improving body-powered and electrically-powered prototypes.
  • 2.8K
  • 26 Oct 2020
Topic Review
Targeted Muscle Reinnervation
Targeted Muscle Reinnervation (TMR) is considered to be an innovative and relevant surgical technique for improving the prosthetic control for people with different amputation levels of the limb. Indeed, TMR surgery makes it possible to obtain reinnervated areas that act as biological amplifiers of the motor control. On the technological side, a great deal of research has been conducted in order to evaluate various types of myoelectric prosthetic control strategies, whether direct control or pattern recognition-based control. In the literature, different control performance metrics, which have been evaluated on TMR subjects, have been introduced, but no accepted reference standard defines the better strategy for evaluating the prosthetic control. Indeed, the presence of several evaluation tests that are based on different metrics makes it difficult the definition of standard guidelines for comprehending the potentiality of the proposed control systems. Additionally, there is a lack of evidence about the comparison of different evaluation approaches or the presence of guidelines on the most suitable test to proceed for a TMR patients case study. This review aims at identifying these limitations byexamining the several studies in the literature on TMR subjects, with different amputation levels, and proposing a standard method for evaluating the control performance metrics.
  • 2.8K
  • 31 Mar 2021
Topic Review
Nitrogen removal in bioelectrochemical systems
Nitrogenous compounds attract great attention because of their environmental impact and harmfulness to the health of human beings. Various biological technologies have been developed to reduce the environmental risks of nitrogenous pollutants. Bioelectrochemical systems (BESs) are considered to be a novel biological technology for removing nitrogenous contaminants by virtue of their advantages, such as low energy requirement and capacity for treating wastewaters with a low C/N ratio. Therefore, increasing attention has been given to carry out biological processes related to nitrogen removal with the aid of cathodic biofilms in BESs. Prior studies have evaluated the feasibility of conventional biological processes including nitrification, denitrification, and anaerobic ammonia oxidation (anammox), separately or combined together, to remove nitrogenous compounds with the help of BESs. The present review summarizes the progress of developments in BESs in terms of the biological process, cathodic biofilm, and affecting factors for efficient nitrogen removal.
  • 2.8K
  • 27 Jul 2020
Topic Review
Sensors and Actuation Technologies in Exoskeletons
Exoskeletons and exoskeletal robots are wearable devices based on a mechanical structure that conceptually mirrors the skeletal structure of a limb or of the involved body-part. Exoskeletons are robots that closely interact with humans and that are increasingly used for different purposes, such as rehabilitation, assistance in the activities of daily living (ADLs), performance augmentation or as haptic devices.
  • 2.8K
  • 25 Feb 2022
Topic Review
Machine-Learning-Based Disease Diagnosis
Machine learning (ML), an area of artificial intelligence (AI), enables researchers, physicians, and patients to solve some of these issues. Many researchers and practitioners illustrate the promise of machine-learning-based disease diagnosis (MLBDD), which is inexpensive and time-efficient. Traditional diagnosis processes are costly, time-consuming, and often require human intervention. While the individual’s ability restricts traditional diagnosis techniques, ML-based systems have no such limitations, and machines do not get exhausted as humans do. As a result, a method to diagnose disease with outnumbered patients’ unexpected presence in health care may be developed. To create MLBDD systems, health care data such as images (i.e., X-ray, MRI) and tabular data (i.e., patients’ conditions, age, and gender) are employed.
  • 2.7K
  • 28 Mar 2022
Topic Review
Magnetoencephalography
Magnetoencephalography (MEG) is a functional brain imaging technique that measures magnetic flux on the surface of the head associated with underlying neuronal electrical dipoles.
  • 2.7K
  • 08 Mar 2021
Topic Review
3D Cell Culture
A 3D cell culture is an artificially created environment in which biological cells are permitted to grow or interact with their surroundings in all three dimensions. Unlike 2D environments (e.g. a Petri dish), a 3D cell culture allows cells in vitro to grow in all directions, similar to how they would in vivo. These three-dimensional cultures are usually grown in bioreactors, small capsules in which the cells can grow into spheroids, or 3D cell colonies. Approximately 300 spheroids are usually cultured per bioreactor.
  • 2.7K
  • 30 Nov 2022
Topic Review
Bone: An Outstanding Composite Material
Bone is an outstanding, well-designed composite. It is constituted by a multi-level structure wherein its properties and behavior are dependent on its composition and structural organization at different length scales. The combination of unique mechanical properties with adaptive and self-healing abilities makes bone an innovative model for the future design of synthetic biomimetic composites with improved performance in bone repair and regeneration. 
  • 2.6K
  • 16 May 2022
Topic Review
Deep Learning-based Contactless PPG Methods
Physiological measurements are widely used to determine a person’s health condition. Photoplethysmography (PPG) is a physiological measurement method that is used to detect volumetric changes in blood in vessels beneath the skin. Medical devices based on PPG have been introduced to measure different physiological measurements including heart rate (HR), respiratory rate, heart rate variability (HRV), oxyhemoglobin saturation, and blood pressure. Due to its low cost and non-invasive nature, PPG is utilized in many devices such as finger pulse oximeters, sports bands, and wearable sensors. PPG-based physiological measurements can be categorized into two types: contact-based and contactless.
  • 2.6K
  • 08 Jun 2021
Topic Review
Graphene-based Membranes for H2 Separation
Hydrogen is an industrial gas that has showcased its importance in several well-known processes such as ammonia, methanol and steel productions, as well as in petrochemical industries. Besides, there is a growing interest in hydrogen production and purification owing to the global efforts to minimize the emission of greenhouse gases. Nevertheless, hydrogen which is produced synthetically is expected to contain other impurities and unreacted substituents (e.g., carbon dioxide, nitrogen and methane), such that subsequent purification steps are typically required for practical applications. In this context, membrane-based separation has attracted a vast amount of interest due to its desirable advantages over conventional separation processes, such as the ease of operation, low energy consumption and small plant footprint. Efforts have also been made for the development of high-performance membranes that can overcome the limitations of conventional polymer membranes. In particular, the studies on graphene-based membranes have been actively conducted most recently, showcasing outstanding hydrogen-separation performances.
  • 2.6K
  • 26 Nov 2020
  • Page
  • of
  • 27
Academic Video Service