Topic Review
Thermogenesis
Thermogenesis is an energy demanding process by which endotherms produce heat to maintain their body temperature in response to cold exposure. Mitochondria in the brown and beige adipocytes play a key role in thermogenesis, as the site for uncoupling protein 1 (UCP1), which allows for the diffusion of protons through the mitochondrial inner membrane to produce heat. 
  • 1.6K
  • 23 Mar 2021
Topic Review
Determination of Steroids by High Performance Liquid Chromatography-Fluorescence
Steroids are compounds widely available in nature and synthesized for therapeutic and medical purposes. Although several analytical techniques are available for the quantification of steroids in clinical samples, their analysis is challenging due to their low levels and complex matrices. The efficiency and quick separation of the high performance liquid chromatography (HPLC) combined with the sensitivity, selectivity, simplicity, and cost-efficiency of fluorescence, make HPLC coupled to fluorescence detection (HPLC-FLD) an ideal tool for routine measurement and detection of steroids for clinical and medical applications.
  • 1.6K
  • 11 Apr 2022
Topic Review
Detecting Analytes in Urine for Urinalysis
Human urine samples contain several components that can indicate the health condition of a patient, and therefore aid in the diagnosis of common clinical conditions such as diabetes mellitus (DM), urinary tract infections (UTIs), renal stone disease, kidney disorders, liver problems, obesity, other metabolic disorders, or fetal hypothyroidism. Urine samples also provide evidence of underlying health problems in pre-symptomatic and asymptomatic individuals, which can facilitate early intervention and therapy. These benefits play an important role in encouraging individual access to continuous and regular health monitoring.
  • 1.5K
  • 06 Dec 2022
Topic Review
Polyamines
Polyamines (PAs), such as putrescine (PUT), spermine (SPE), and spermidine (SPD), are organic polycationic alkylamines, which are synthesized from L-ornithine or by the decarboxylation of amino acids. They are found in all living cells and mammalian cells contain a millimolar concentration of PAs. In 1678, the SPE was first identified by Van Leeuwenhoek as crystals in dried semen but not in fresh ones.
  • 1.4K
  • 28 Jun 2021
Topic Review
Metabolic Reprogramming
Metabolic reprogramming is now recognized as a hallmark of cancer cells and supports cancer growth. Elucidating the underlying mechanisms of metabolic reprogramming in cancer cells may help identifying cancer targets and treatment strategies.
  • 1.4K
  • 20 Jan 2021
Topic Review
Gestational Diabetes Mellitus (GDM)
Gestational Diabetes Mellitus (GDM) is a transient condition characterized by carbohydrate intolerance, hyperglycemia, peripheral insulin resistance, insufficient insulin secretion or activity, endothelial dysfunction, and low-grade inflammation during pregnancy, frequently with the first onset between 24 and 28 weeks of gestation.
  • 1.4K
  • 28 Sep 2021
Topic Review
Advanced Glycation End Products and Cardiovascular Disease
Epidemiological studies demonstrate the role of early and intensive glycemic control in the prevention of micro and macrovascular disease in both type 1 and type 2 diabetes mellitus (DM). Hyperglycemia elicits several pathways related to the etiopathogenesis of cardiovascular disease (CVD), including the generation of advanced glycation end products (AGEs). 
  • 1.4K
  • 11 Mar 2022
Topic Review
Metformin
Metformin is a metabolic modulator widely used to treat type II diabetes and metabolic syndrome patients. It shows a safe profile and its use in additional indications, such as cancer, is an important matter of investigation.
  • 1.4K
  • 09 Dec 2020
Topic Review
T2DM and the Gut Microbiota
Type 2 Diabetes Mellitus (T2DM) affects over 9% of the United States population alone, constitutes a cause for ensuing cardiovascular disease, and is typically closely linked to obesity status. While obesity has long been perceived to stem from a sedentary lifestyle and high fat intake there is increasing evidence supporting the idea that this is a more complex issue than initially thought. The human gut microbiome has been a recent point of investigation due to the idea that it may be closely linked to T2DM. The aforementioned high fat diets can impact the gut microbiome in a significant way, altering the demography of the gut’s microflora, hence shifting the gut into a state of dysbiosis. Dysbiosis is a state that favors the initiation of a cascade inducing metabolic deregulation, increasing inflammation and insulin resistance systemically. Below the relationship of the microbiome to T2DM is briefly discussed.
  • 1.3K
  • 29 Oct 2020
Topic Review
Diabetes Mellitus
Diabetes mellitus has become a serious and chronic metabolic disorder that results from a complex interaction of genetic and environmental factors, principally characterized by hyperglycemia, polyuria, and polyphagia.
  • 1.3K
  • 29 Apr 2021
Topic Review
Integrins and Immune Cells in Cancer Immunology
Integrins, a superfamily of cell adhesion receptors, bind to extracellular matrix (ECM) ligands and cell surface ligands to mediate physiological activities. Integrins are composed of a transmembrane α subunit and β subunit, with 18 α subunits and 8 β subunits currently known, constituting 24 heterodimers in humans that are divided into four categories: RGD receptors, leucocyte-specific receptors, collagen receptors, and laminin receptors.
  • 1.3K
  • 12 Apr 2023
Topic Review
Germ Cell Development
Mechanistic understanding of germ cell formation at a genome-scale level can aid in developing novel therapeutic strategies for infertility. Germ cell formation is a complex process that is regulated by various mechanisms, including epigenetic regulation, germ cell-specific gene transcription, and meiosis.
  • 1.3K
  • 11 Mar 2021
Topic Review
Licorice and the Cardiovascular System
Licorice is one of the oldest used herbs for medicinal purposes and consists of up to 300 active compounds. The main active constituent of licorice is the prodrug glycyrrhizin, which is successively converted to 3β-monoglucuronyl-18β-glycyrrhetinic acid (3MGA) and 18β-glycyrrhetinic acid (GA) in the intestines. Despite many reported health benefits, 3MGA and GA inhibit the 11-β-hydrogenase type II enzyme (11β-HSD2) oxidizing cortisol to cortisone. Through activation of mineralocorticoid receptors, high cortisol levels induce a mild form of apparent mineralocorticoid excess in the kidney and increase systemic vascular resistance. Continuous inhibition of 11β-HSD2 related to excess licorice consumption will create a state of hypernatremia, hypokalemia and increased fluid volume.
  • 1.3K
  • 21 May 2021
Topic Review
Genetics of Primary Aldosteronism
Primary aldosteronism (PA) is the most common form of secondary hypertension, with a prevalence of 5–10% among patients with hypertension. PA is mainly classified into two subtypes: aldosterone-producing adenoma (APA) and bilateral idiopathic hyperaldosteronism. Recent developments in genetic analysis have facilitated the discovery of mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, CLCN2, and CTNNB1 in sporadic or familial forms of PA in the last decade. These findings have greatly advanced our understanding of the mechanism of excess aldosterone synthesis, particularly in APA. Most of the causative genes encode ion channels or pumps, and their mutations lead to depolarization of the cell membrane due to impairment of ion transport. Depolarization activates voltage-gated Ca2+ channels and intracellular calcium signaling and promotes the transcription of aldosterone synthase, resulting in overproduction of aldosterone. 
  • 1.3K
  • 07 May 2021
Topic Review
Circadian Rhythms
Infertility represents a growing health problem in industrialized countries. Thus, a greater understanding of the molecular networks involved in this disease could be critical for the development of new therapies. A recent finding revealed that circadian rhythmicity disruption is one of the main causes of poor reproductive outcome. The circadian clock system beats circadian rhythms and modulates several physiological functions such as the sleep-wake cycle, body temperature, heart rate, and hormones secretion, all of which enable the body to function in response to a 24 h cycle. This intricated machinery is driven by specific genes, called “clock genes” that fine-tune body homeostasis. Stress of modern lifestyle can determine changes in hormone secretion, favoring the onset of infertility-related conditions that might reflect disfunctions within the hypothalamic–pituitary–gonadal axis. Consequently, the loss of rhythmicity in the suprachiasmatic nuclei might affect pulsatile sexual hormones release. Herein, we provide an overview of the recent findings, in both animal models and humans, about how fertility is influenced by circadian rhythm. In addition, we explore the complex interaction among hormones, fertility and the circadian clock. A deeper analysis of these interactions might lead to novel insights that could ameliorate the therapeutic management of infertility and related disorders.
  • 1.2K
  • 02 Feb 2021
Topic Review
Vitamin D Deficiency
Vitamin D was found to counteract insulin resistance via  participation in the maintenance of normal resting reactive oxygen species level and regulation of Ca2+ level in many cell types. Both genomic and non-genomic action of vitamin D is directed to insulin signaling. Thereby, vitamin D  reduces the extent of pathologies associated with insulin resistance such as oxidative stress and inflammation. Therefore, the beneficial actions of vitamin D include an improvement of glucose and lipid metabolism in insulin-sensitive tissues, and in consequence the diminish of insulin resistance.
  • 1.2K
  • 30 Sep 2020
Topic Review
Methylation
Methylation is a universal biochemical process which covalently adds methyl groups to a variety of molecular targets. It plays a critical role in two major global regulatory mechanisms, epigenetic modifications and imprinting, via methyl tagging on histones and DNA. During reproduction, the two genomes that unite to create a new individual are complementary but not equivalent. Methylation determines the complementary regulatory characteristics of male and female genomes. DNA methylation is executed by methyltransferases that transfer a methyl group from S-adenosylmethionine, the universal methyl donor, to cytosine residues of CG (also designated CpG). Histones are methylated mainly on lysine and arginine residues. The methylation processes regulate the main steps in reproductive physiology: gametogenesis, and early and late embryo development, and thus play a crucial role in the transmission of life. 
  • 1.2K
  • 17 Dec 2020
Topic Review
Obesity
Obesity, a complex and multifactorial disease associated with excessive adiposity or body fat, currently affects over a third of the world’s population. Obesity is closely related to a significant increase in the morbidity risk of chronic diseases, such as disability, depression, type 2 diabetes, hypertension, cardiovascular diseases, cancers, and mortality, thus representing a serious public health problem. According to the World Health Organization (WHO), the body mass index (BMI) is used as a tool to assess overweight or obesity; a BMI ≥ 40 kg/m2 is characteristic of severe obesity. Rare genetic obesity disorders are characterized by mutations of genes strongly involved in the central or peripheral regulation of energy balance. These mutations are effective in causing the early onset of severe obesity and insatiable hunger (hyperphagia), suggesting that the genetic component can contribute to 40–70% of obesity.”
  • 1.2K
  • 13 Jan 2022
Topic Review
Metabolic Reprogramming in Cancer Cells
Cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. Altered metabolic flux in cancer is controlled by tumor-host cell interactions, key oncogenes, tumor suppressors, and other regulatory molecules, including non-coding RNAs. Changes to metabolic pathways in cancer are dynamic, exhibit plasticity, and are often dependent on the type of tumor and the tumor microenvironment, leading in a shift of thought from the Warburg Effect and the “reverse Warburg Effect” to metabolic plasticity. 
  • 1.2K
  • 27 Jul 2021
Topic Review
Endocrine Disrupting Chemicals
Endocrine-disrupting chemicals (EDCs) are exogenous substances able to mimic or to interfere with the endocrine system, thus altering key biological processes such as organ development, reproduction, immunity, metabolism and behavior. High concentrations of EDCs are found in several everyday products including plastic bottles and food containers and they could be easily absorbed by dietary intake. In recent years, considerable interest has been raised regarding the biological effects of EDCs, particularly Bisphenol A (BPA) and phthalates, on human pregnancy and fetal development. Several evidence obtained on in vitro and animal models as well as by epidemiologic and population studies strongly indicated that endocrine disruptors could negatively impact fetal and placental health by interfering with the embryonic developing epigenome, thus establishing disease paths into adulthood. Moreover, EDCs could cause and/or contribute to the onset of severe gestational conditions as Preeclampsia (PE), Fetal Growth Restriction (FGR) and gestational diabetes in pregnancy, as well as obesity, diabetes and cardiovascular complications in reproductive age. Therefore, despite contrasting data being present in the literature, endocrine disruptors must be considered as a therapeutic target. Future actions aimed at reducing or eliminating EDC exposure during the perinatal period are mandatory to guarantee pregnancy success and preserve fetal and adult health.
  • 1.2K
  • 27 Oct 2020
  • Page
  • of
  • 17
ScholarVision Creations