Topic Review
Fusarium Cyclodepsipeptide Mycotoxins
Most of the fungi from the Fusarium genus are pathogenic to cereals, vegetables, and fruits, and the products of their secondary metabolism mycotoxins may accumulate in foods and feeds. Non-ribosomal cyclodepsipeptides are one of the main mycotoxin groups and include beauvericins (BEAs), enniatins (ENNs), and beauvenniatins (BEAEs).
  • 978
  • 08 Feb 2021
Topic Review
Intestinal Permeability
The intestinal epithelial barrier consists of multiple elements that contribute to its function as a physical, chemical, and immunological defense. While the mucus layer, intestinal epithelium, and the underlying immune cells in the lamina propria comprise a major component of the defense response, intestinal epithelial permeability is regulated by tight junctions.
  • 977
  • 03 Sep 2021
Topic Review
Extracellular Vesicles
Tobacco smoking is prevalent among people living with HIV (PLWH). It is known to increase viral replication and exacerbate HIV associated conditions. Some reports demonstrate a conflicting impact of cigarette smoke on PLWHA in terms of neurocognitive disorders, which further strengthens the necessity to study whether cigarette smoking is a causative factor for HAND in PLWHA. One possible mechanistic pathway of tobacco smoking-induced HIV pathogenesis and HAND could be the transportation of oxidative stress-related agents and inflammatory modulators via extracellular vesicles (EVs). EV are nanosized vesicles, that are formed and released from most of the mammalian cells and these are considered as cellular messengers because of their capability to transport the functional messages from cells to other distant cells. This review focuses on recent advances in the field of EVs with an emphasis on smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis.
  • 973
  • 06 Jan 2021
Topic Review
β-Naphthoflavone, Ethanol Reverse Mitochondrial Dysfunction
The 1-methyl-4-phenylpyridinium (MPP+) is a parkinsonian-inducing toxin that promotes neurodegeneration of dopaminergic cells by directly targeting complex I of mitochondria. Recently, it was reported that some Cytochrome P450 (CYP) isoforms, such as CYP 2D6 or 2E1, may be involved in the development of this neurodegenerative disease. In order to study a possible role for CYP induction in neurorepair, we designed an in vitro model where undifferentiated neuroblastoma SH-SY5Y cells were treated with the CYP inducers β-naphthoflavone (βNF) and ethanol (EtOH) before and during exposure to the parkinsonian neurotoxin, MPP+. The toxic effect of MPP+ in cell viability was rescued with both βNF and EtOH treatments. We also report that this was due to a decrease in reactive oxygen species (ROS) production, restoration of mitochondrial fusion kinetics, and mitochondrial membrane potential. These treatments also protected complex I activity against the inhibitory effects caused by MPP+, suggesting a possible neuroprotective role for CYP inducers. These results bring new insights into the possible role of CYP isoenzymes in xenobiotic clearance and central nervous system homeostasis.
  • 973
  • 02 Nov 2020
Topic Review
Ethnomedicinal Properties and Pharmacological Uses of Moringa oleifera
Moringa oleifera (M. oleifera), the “miracle tree”, thrives globally in almost all tropical and subtropical regions, but it is believed to be native to Afghanistan, Bangladesh, India, and Pakistan. The Moringa family comprises 13 species (M. oleifera, M. arborea, M. rivae, M. ruspoliana, M. drouhardii, M. hildebrandtii, M. concanensis, M. borziana, M. longituba, M. pygmaea, M. ovalifolia, M. peregrina, M. stenopetala), of which M. oleifera has become well known for its use in nutrition, biogas production, fertilizer, etc. Moringa has the unique property of tolerating drought. Studies have shown that M. oleifera is among the cheapest and most reliable alternatives for good nutrition. Nearly all parts of the tree are used for their essential nutrients. M. oleifera leaves have a high content of beta-carotene, minerals, calcium, and potassium. Dried leaves have an oleic acid content of about 70%, which makes them suitable for making moisturizers. The powdered leaves are used to make many beverages, of which “Zija” is the most popular in India. The bark of the tree is considered very useful in the treatment of different disorders such as ulcers, toothache, and hypertension. Roots, however, are found to have a role in the treatment of toothache, helminthiasis, and paralysis. The flowers are used to treat ulcers, enlarged spleen, and to produce aphrodisiac substances. The tree is believed to have incredible properties in treating malnutrition in infants and lactating mothers. 
  • 971
  • 13 Feb 2023
Topic Review
Ion Channels of Nociception
Acute pain plays the vital role protecting our health whereas chronic and pathological pain are debilitating conditions.  However molecular mechanisms of pain which are the keys for pain relief remain largely unaddressed. Nevertheless, new molecular actors with important roles in pain mechanisms are being characterized, such as the mechanosensitive Piezo ion channels. This study presents modern trends and promising advances in the field of molecular mechanisms of pain. 
  • 970
  • 24 Mar 2021
Topic Review
Gold-based anticancer delivery systems
The structures of these gold derivatives (i.e. gold nanoparticles, gold (I)/(III) complexes and carbene-based gold complexes) were synthesized to evaluate the influence of  increased activity and/or selectivity on their pharmacological effects.
  • 969
  • 06 Apr 2021
Topic Review
Psycho-Neuro-Endocrine-Immune Basis of the Placebo Effect
The placebo effect can be defined as the improvement of symptoms in a patient after the administration of an innocuous substance in a context that induces expectations regarding its effects. During recent years, it has been discovered that the placebo response not only has neurobiological functions on analgesia, but that it is also capable of generating effects on the immune and endocrine systems. Beyond studies about its mechanism of action, the placebo effect has proved to be useful in the clinical setting with promising results in the management of neurological, psychiatric, and immunologic disorders. However, more research is needed to better characterize its potential use. 
  • 969
  • 31 May 2022
Topic Review
Nutritional Interventions for COVID-19
The coronavirus infection (COVID‐19) conveys a serious threat globally to health and economy because of lack of vaccines and specific treatments. A common factor for conditions that predispose for serious progress is a low-grade inflammation, as seen e.g. in metabolic syndrome, diabetes and heart failure to which micronutrient deficiencies may contribute.  The aim of the present article is to explore the usefulness of early micronutrient intervention, with focus on zinc, selenium and vitamin D, to relieve escalation of COVID-19.  Methods: We have conducted an online search for articles published in the period 2010-2020 on zinc, selenium and vitamin D and corona and related virus infections.  Results: There were a few studies providing direct evidence on association between zinc, selenium and vitamin D and COVID-19.  Adequate supply of zinc, selenium, and vitamin D, is essential for resistance to other viral infections, immune function and reduced inflammation. Hence, it is suggested that nutrition intervention securing an adequate status might protect against SARS-CoV2, and  mitigate the course of COVID‐19.  Conclusion: We recommend initiation of adequate supplementation in high risk areas and/or soon after the time of suspected infection with SARS-CoV-2. Subjects in high-risk groups should have high priority as regards this nutritive adjuvant therapy, which should be started prior to administration of specific and supportive medical measures. 
  • 968
  • 24 Aug 2020
Topic Review
Jasmonate Compounds
There are four known stereoisomers of jasmonic acid: trans-(−)-(3R,7R), abbreviated as (−)-JA; trans-(+)-(3S,7S) abbreviated as (+)-JA; cis-(−)-(3S,7R) abbreviated as (−)-epi-JA; cis-(+)-(3R,7S) abbreviated as (+)-epi-JA [15]. The naturally occurring jasmonic acid in plants is (−)-JA and (+)-epi-JA. Due to the fact that the cis stereoisomers are thermodynamically less stable, they epimerize at the C-7 atom to the stable trans form, which at the same time shows a higher biological activity. The biological activity of jasmonic acid has been found to be dependent on the presence of a carboxyl group at the C-1 position, a keto or hydroxyl group at the C-6 position, and a pentenyl side chain at the C-7 position. Because of this structure, jasmonates inhibit, induce and/or stimulate changes that occur in plants at the morphological, physiological, cellular and molecular levels.
  • 966
  • 29 Jun 2021
Topic Review
Cannabidiol
Cannabidiol (CBD) is a phytocannabinoid discovered in cannabis plants and may account for up to 40% of the extracts. In 2018, CBD (Epidiolex) was approved by the United States Food and Drug Administration (FDA) for the treatment of two epilepsy disorders. Since then, CBD has gained popularity in the scientific community and its efficacy has been screened for a variety of medical and psychological conditions. The literature provides evidence supporting CBD’s therapeutic utility in the treatment of neuropathic pain, epilepsy, anxiety, depression, mania and other neuropsychiatric conditions, including substance use disorders.   
  • 964
  • 13 Jan 2021
Topic Review
Molluscivorous and Vermivorous Conus Species
It is generally believed that more than 700 Conus species have evolved during the last 50 million years. With the highest species abundance occurring in southeast Asia, most Conus can be found in the shallow waters of tropical and subtropical oceans. Conus is widely distributed in rocky shores, sandy beaches, coral reefs and intertidal waters, with depths reaching up to over 600 m. Nowadays, Conus species are generally overexploited, and some species are now endangered. Exploring these waters of potentially high species diversity could enrich our understanding of their population’s genetic structure and provide the missing pieces for clarifying Conus evolution. As the conotoxin compounds vary greatly throughout the growth stages and across geolocations within the same species, further investigation of these species-specific regional distribution differences may provide crucial insights for artificial breeding and harvesting specific bioactive compounds in the future.
  • 964
  • 18 Feb 2022
Topic Review
The Coming of Age of Biosimilars: Perspective
The first biosimilar, Sandoz’s Omnitrope (human growth hormone), was approved in 2006 by both the FDA and EMA; it was approved by the FDA under the 505(b)(2) generic product legislation and by the EU as a biosimilar. Later, Sandoz received the first licensing of Zarzio/Zarxio (filgrastim) in 2015; this was the first biosimilar product approved under the 351(k) BLA legislation in the US Many firsts were to follow in the US: the first mAb (bevacizumab), the first pegylated cytokine (pegfilgrastim), the first ophthalmic biosimilar (ranibizumab), and the first two interchangeable biosimilars (insulin glargine and adalimumab). The US also approved the first biosimilars without clinical efficacy testing (filgrastim, pegfilgrastim, and erythropoietin alfa).
  • 964
  • 02 Jun 2022
Topic Review
Microbial Biosurfactants
Surface-active molecules also known as surfactants are chemicals that have key impacts on several aspects of our daily products and life. Most of these chemical surfactants originate from petrochemical of oleochemical sources and are ingredients of household laundry cleaning agents, cosmetics, pharmaceutical, environmental cleaning products, petroleum, and agro-food processing industry. Worldwide use of these compounds has been steadily increasing during the past few decades and will be further increasing in the future.  Most such chemical surfactants  however, have negative effects on the environment, a fact that led to the search for alternatives with less impact and the shift towards a more sustainable environmental friendly biological surfactants (biosurfactants) which was mainly driven by the sustainability agenda by many international players in the field. Most these biosurfactants are produced by microorganisms (bacteria and fungi) and the advantages they bring include much lower toxicity, relative stability at high temperature and in adverse environments in addition to being readily biodegradable when, discharged into the environment. Many chemical surfactants included in cosmetic and pharmaceutical compounds have been reported to have the potential to cause detrimental effects such as allergic reactions and skin irritations to the human skin which encouraged the search for a more suitable replacements  with less or no negative effects on skin health. As biosurfactants were known to exhibit skin compatibility, protection and surface moisturizing effects which are key components for an effective skincare routine in addition to lower toxicity. Interest therefore in biosurfactants that have antimicrobial, skin surface moisturizing and low toxicity properties which would make them suitable substitutes for chemical surfactants in current cosmetic and personal skincare and pharmaceutical formulations has been steadily increasing. 
  • 961
  • 24 Mar 2023
Topic Review
Artemisia absinthium L.
Artemisia absinthium – wormwood (Asteraceae) – is a very important species in the history of medicine, formerly described in medieval Europe as “the most important master against all exhaustions”. It is a species known as a medicinal plant in Europe and also in West Asia and North America. The raw material obtained from this species is Artemisiae herba and Artemisiae absinthium aetheroleum. The main substances responsible for the biological activity of the herb are: the essential oil, bitter sesquiterpenoid lactones, flavonoids, another bitterness-imparting compounds, azulenes, phenolic acids, tannins and lignans. In the official European medicine, the species is used in both allopathy and homeopathy. In the traditional Asian and European medicine, it has been used as an effective agent in gastrointestinal ailments and also in the treatment of helminthiasis, anaemia, insomnia, bladder diseases, difficult-to-heal wounds, and fever. Today, numerous other directions of biological activity of the components of this species have been demonstrated and confirmed by scientific research, antiprotozoal, antibacterial, antifungal, anti-ulcer, hepatoprotective, anti-inflammatory, immunostimulatory, cytotoxic, analgesic, neuroprotective, antidepressant, procognitive, neurotrophic, and cell membrane stabilizing activities. A. absinthium is also making a successful career as a cosmetic plant. In addition, the importance of this species as a spice plant and valuable additive in the alcohol industry (famous absinthe and vermouth-type wines) has not decreased. The species has also become an object of biotechnological research.
  • 959
  • 27 Jan 2022
Topic Review
Biological Drug Approvals by the FDA in 2015–2021
Despite belonging to a relatively new class of pharmaceuticals, biological drugs have been used since the 1980s, when they brought about a breakthrough in the treatment of chronic diseases, especially cancer. They conquered a large space in the pipeline of the pharmaceutical industry and boosted the innovation portfolio and arsenal of therapeutic compounds available. From 2015 to 2021, the number of drugs included in this class grew over this period, totaling 90 approvals, with an average of 13 authorizations per year.
  • 958
  • 30 Sep 2022
Topic Review
Parthenin
Parthenin, a sesquiterpene lactone of pseudoguaianolide type, is the representative secondary metabolite of the tropical weed Parthenium hysterophorus (Asteraceae). It accounts for a multitude of biological activities, including toxicity, allergenicity, allelopathy, and pharmacological aspects of the plant. Thus far, parthenin and its derivatives have been tested for chemotherapeutic abilities, medicinal properties, and herbicidal/pesticidal activities. However, due to the lack of toxicity-bioactivity relationship studies, the versatile properties of parthenin are relatively less utilised. The possibility of exploiting parthenin in different scientific fields (e.g., chemistry, medicine, and agriculture) makes it a subject of analytical discussion. It is important to highlight that the toxic nature of parthenin can be overcome by thoroughly understanding its structural basis, designing suitable derivatives, and deciding the appropriate doses.
  • 957
  • 09 Oct 2021
Topic Review
Roxadustat
Roxadustat is the first oral drug in the class of new erythropoiesis drugs and a potent HIF-PHD inhibitor, exerted to treat anemia in patients with CKD. In phase 1, 2 and 3 studies with CKD-affected patients, roxadustat was more effective to stimulate erythropoiesis for anemia correction than previously used drugs. Roxadustat can be orally given, unlike other erythropoiesis drugs with parenteral administration only, which grants roxadustat a considerable advantage.
  • 956
  • 16 Mar 2021
Topic Review
Combination Therapies in Alzheimer’s Disease
Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Until now, available therapeutic agents for AD treatment only provide symptomatic treatment. Since AD pathogenesis is multifactorial, use of a multimodal therapeutic intervention addressing several molecular targets of AD-related pathological processes seems to be the most practical approach to modify the course of AD progression. It has been demonstrated through numerous studies, that the clinical efficacy of combination therapy (CT) is higher than that of monotherapy. It is indeed difficult to combine several pharmacophores into a single molecule.  It is essential to carry out long-duration randomized controlled trials to establish whether CT delays disease progression in early AD stages. Other factors also need to be assessed in CT, such as its potential neuroprotective effects, cost-effectiveness, and a more exhaustive estimation of its potential benefits on the patients at the end-stage of AD.
  • 954
  • 28 Oct 2020
Topic Review
Ad-Dressing Stem Cells
Stem cell encapsulation is a technique that utilizes various biomaterials for the creation of a semi-permeable membrane that encases the stem cells. Stem cell encapsulation can be accomplished by employing a great variety of natural and/or synthetic hydrogels, and offers many benefits in regenerative medicine, including protection from host’s immune system and mechanical stress, improved cell viability, proliferation and differentiation, cryopreservation and controlled and continuous delivery of the stem cell secreted therapeutic agents. In this review, we report and discuss almost all natural and synthetic hydrogels used in stem cell encapsulation, along with the benefits that these materials, alone or in combinations, could offer to cell therapy through a functional cell encapsulation.
  • 954
  • 08 Jan 2021
  • Page
  • of
  • 53
ScholarVision Creations