You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Antisense Peptide Technology
Antisense peptide technology (APT) is based on a useful heuristic algorithm for rational peptide design. It was deduced from empirical observations that peptides consisting of complementary (sense and antisense) amino acids interact with higher probability and affinity than the randomly selected ones. This phenomenon is closely related to the structure of the standard genetic code table, and at the same time, is unrelated to the direction of its codon sequence translation.
  • 1.3K
  • 11 Oct 2021
Topic Review
Geometrical Design of Lattices in Additive Manufacturing
Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled progress in the design and fabrication of customised or patient-specific (meta-)biomaterials and biomedical devices (e.g., implants, prosthetics, and orthotics) with complex internal microstructures and tuneable properties. Several design guidelines have been proposed for creating porous lattice structures, particularly for biomedical applications.
  • 1.3K
  • 25 Aug 2022
Topic Review
Advances in Non-Invasive Neuromodulation: Closed-Loop Vagus Nerve Stimulation
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation therapy that eliminates the need for internal device implantation, presenting as a favorable therapeutic option. This method relies on electrical surface stimulation, bypassing the need for surgical procedures.
  • 1.3K
  • 18 Jan 2024
Topic Review
Reprogramming of α-Cells into Insulin Producing Cells
Numerous cell sources are being explored to replenish functional β-cell mass since the proof-of -concept for cell therapy of diabetes was laid down by transplantation of islets. Various strategies that aim to generate bone fide insulin producing cells are explored.  In particular on reprogramming and especially on α-cells conversion into insulin producing cells are focused here. A logical place to begin with for generating β-cells is to utilise the plasticity of closely related endoderm derived cell types like pancreatic non-β-cells and coaxing them to adopt a β-cell phenotype. Given the close ontogenetic relationship, functional similarity and dependency among these cells, the potential for interconversion is unequivocal. Phenotypic plasticity between pancreatic α-cells and β-cells is notably pronounced.
  • 1.3K
  • 16 Sep 2022
Topic Review
COVID-19 Biomarkers and Point-of-Care Diagnosis
COVID-19, also known as SARS-CoV-2 is a novel, respiratory virus currently plaguing humanity. Genetically, at its core, it is a single-strand positive-sense RNA virus. It is a beta-type Coronavirus and is distinct in its structure and binding mechanism compared to other types of coronaviruses. Testing for the virus remains a challenge due to the small market available for at-home detection. Currently, there are three main types of tests for biomarker detection: viral, antigen and antibody. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) remains the gold standard for viral testing. However, the lack of quantitative detection and turnaround time for results are drawbacks. This manuscript focuses on recent advances in COVID-19 detection that have lower limits of detection and faster response times than RT-PCR testing. The advancements in sensing platforms have amplified the detection levels and provided real-time results for SARS-CoV-2 spike protein detection with limits as low as 1 fg/mL in the Graphene Field Effect Transistor (FET) sensor. Additionally, using multiple biomarkers, detection levels can achieve a specificity and sensitivity level comparable to that of PCR testing. Proper biomarker selection coupled with nano sensing detection platforms are key in the widespread use of Point of Care (POC) diagnosis in COVID-19 detection.
  • 1.3K
  • 06 Sep 2021
Topic Review
Supramolecular Adhesive Materials with Antimicrobial Activity
Taking advantage of the dynamic and reversible interactions such as hydrogen bonding, pi-pi stacking, electrostatic interactions, host-guest interactions, hydrophobic effects, and van der Waals interactions, a variety of functional supramolecular adhesive materials have been developed to realize tough bonding on tissues or organs. Non-covalent interactions are widely exploited and proved effective in developing supramolecular polymers and polymer composites with desired mechanical strength, interfacial adhesion, and intelligent, responsive properties. These supramolecular adhesive materials are promising for a range of biomedical applications.
  • 1.3K
  • 25 Aug 2022
Topic Review
Wearable Sensing Technology and Long COVID
Long COVID consequences have changed the perception towards disease management, and it is moving towards personal healthcare monitoring. Wearable sensors are being explored for its simplicity, portability, and real time health monitoring system. These smart devices can detect physiological changes in the human body providing a real time solution for quicker medical decision.
  • 1.3K
  • 09 Jan 2023
Topic Review
Graphene Based Materials and Their Antimicrobial Properties
Graphene-based materials are found as excellent resources and employed as efficient anti-microbial agents, and they have been receiving significant attention from scientists and researchers in this regard.
  • 1.3K
  • 12 Nov 2021
Topic Review
Exosomes and Glioma Treatment
More than 40 years ago, vesicle structures, similar to “cytoplasmic fragments” physiologically released, were identified in the cellular matrix. Their peculiarity was their ability to contain various materials, including ribosomes, which are involved in several pathological and physiological activities.These systems were defined as extracellular vesicles (EVs), and they include a wide variety of vesicles (from 30 nm to 5 μm) released from the plasma membrane (PM) of many different cell types into several bodily fluids. All EVs present a lipid bilayer membrane that surrounds a pool of genetic material, cytosolic proteins, or cellular debris. However, they significantly differ in terms of size, biogenesis, mechanisms, and function. Among these membrane vesicles, the most well-studied EVs are exosomes.  Exosomes have sizes ranging between 30 and 150 nm and represent a homogenous population of EVs released from cells when multivesicular bodies (MVBs) are fused with the membrane through inward budding in a highly regulated process. As natural carrier systems, exosomes present low immunogenicity, low toxicity, stability in the bloodstream, and efficient cell uptake due to their endogenous cellular tropism. Furthermore their ability to mediate intercellular communication allows their use as a promising therapeutic and diagnostic tool.
  • 1.3K
  • 24 Nov 2020
Topic Review
Wearable Sensors and Machine Learning for Hypovolemia Problems
Hypovolemia is a physiological state of reduced blood volume that can exist as either (1) absolute hypovolemia because of a lower circulating blood (plasma) volume for a given vascular space (dehydration, hemorrhage) or (2) relative hypovolemia resulting from an expanded vascular space (vasodilation) for a given circulating blood volume (e.g., heat stress, hypoxia, sepsis). The external environment and the user's level of physical activity can exacerbate hypovolemic challenges to the body. Noninvasive, wearable sensing systems are being developed to track a user's ability to compensate for these challenges. 
  • 1.3K
  • 13 Jan 2022
Topic Review
Skin Cancer Detection Using Infrared Thermography
Infrared thermography technology has improved dramatically in recent years and is gaining renewed interest in the medical community for applications in skin tissue identification applications. However, there is still a need for an optimized measurement setup and protocol to obtain the most appropriate images for decision making and further processing. Nowadays, various cooling methods, measurement setups and cameras are used, but a general optimized cooling and measurement protocol has not been defined yet. It is possible to improve thermal images of skin lesions by choosing an appropriate cooling method, infrared camera and optimized measurement setup.
  • 1.2K
  • 16 May 2022
Topic Review
Digital Twins for Tissue Culture
Digital twins in the field of tissue culture include the mechanistic of the biological system in the form of diverse mathematical models, which describe the interaction between tissue culture techniques and cell growth, metabolism, and the quality of the tissue.
  • 1.2K
  • 08 Apr 2021
Topic Review
Post-Stroke Movement with Motion Capture and Musculoskeletal Modeling
Research of post-stroke locomotion via musculoskeletal (MSK) modeling has offered an unprecedented insight into pathological muscle function and its interplay with skeletal geometry and external stimuli. Advances in solving the dynamical system of post-stroke effort and the generic MSK models used have triggered noticeable improvements in simulating muscle activation dynamics of stroke populations.
  • 1.2K
  • 09 Dec 2022
Topic Review
Small-Diameter Vascular Graft Engineering
The increased demands of small-diameter vascular grafts (SDVGs) globally has forced the scientific society to explore alternative strategies utilizing the tissue engineering approaches. Cardiovascular disease (CVD) comprises one of the most lethal groups of non-communicable disorders worldwide. It has been estimated that in Europe, the healthcare cost for the administration of CVD is more than 169 billion €. Common manifestations involve the narrowing or occlusion of blood vessels. The replacement of damaged vessels with autologous grafts represents one of the applied therapeutic approaches in CVD. However, significant drawbacks are accompanying the above procedure; therefore, the exploration of alternative vessel sources must be performed. Engineered SDVGs can be produced through the utilization of non-degradable/degradable and naturally derived materials. Decellularized vessels represent also an alternative valuable source for the development of SDVGs. In this review, a great number of SDVG engineering approaches will be highlighted. Importantly, the state-of-the-art methodologies, which are currently employed, will be comprehensively presented. A discussion summarizing the key marks and the future perspectives of SDVG engineering will be included in this review. Taking into consideration the increased number of patients with CVD, SDVG engineering may assist significantly in cardiovascular reconstructive surgery and, therefore, the overall improvement of patients’ life.
  • 1.2K
  • 22 Dec 2020
Topic Review
Swallow Detection with Acoustics and Accelerometric-Based Wearable Technology
Swallowing disorders, especially dysphagia, might lead to malnutrition and dehydration and could potentially lead to fatal aspiration. Benchmark swallowing assessments, such as videofluoroscopy or endoscopy, are expensive and invasive. Wearable technologies using acoustics and accelerometric sensors could offer opportunities for accessible and home-based long-term assessment. Identifying valid swallow events is the first step before enabling the technology for clinical applications. 
  • 1.2K
  • 09 Jan 2023
Topic Review
Polymeric Biomaterials and Lubricants
With increasing environmental concerns and the depletion of petroleum resources, the development of lubricant additives from bioresources has attracted much attention recently. In this entry, a few polymers and polymer composites are reported, which are synthesized from vegetable oils (soybean oil, sunflower oil, rice bran oil, and castor oil) and used as multifunctional additives in the formulation of eco-friendly lubricant compositions. We mentioned the preparation of vegetable oil-based homo- and copolymers and their characterization by different spectral techniques (FTIR/NMR). 
  • 1.2K
  • 20 May 2021
Topic Review
Lung Cancer: Genotype Prediction in Computer-Aided Decision Systems
Genotype studies are the fundamental keys in the development of personalized medicine in lung cancer and they enable the progress of targeted therapies. Furthermore, gene analysis allows to identify biomarkers that can be used for early cancer detection, predict the prognosis and the response to the treatment plans, and monitor disease progression.
  • 1.2K
  • 27 Apr 2022
Topic Review
Camera-Imaging-Based Measurement of Vital Signs
Techniques for noncontact measurement of vital signs using camera imaging technologies have been attracting increasing attention. For noncontact physiological assessments, computer vision-based methods appear to be an advantageous approach that could be robust, hygienic, reliable, safe, cost effective and suitable for long distance and long-term monitoring. In addition, video techniques allow measurements from multiple individuals opportunistically and simultaneously in groups.
  • 1.2K
  • 07 Sep 2020
Topic Review
Pesticide Aptasensors
Contamination by pesticides in the food chain and the environment is a worldwide problem that needs to be actively monitored to ensure safety. Unfortunately, standard pesticide analysis based on mass spectrometry takes a lot of time, money and effort. Thus, simple, reliable, cost-effective and field applicable methods for pesticide detection have been actively developed. One of the most promising technologies is an aptamer-based biosensor or so-called aptasensor. It utilizes aptamers, short single-stranded DNAs or RNAs, as pesticide recognition elements to integrate with various innovative biosensing technologies for specific and sensitive detection of pesticide residues. Several platforms for aptasensors have been dynamically established, such as colorimetry, fluorometry, electrochemistry, electrochemiluminescence (ECL) and so forth. Each platform has both advantages and disadvantages depending on the purpose of use and readiness of technology. For example, colorimetric-based aptasensors are more affordable than others because of the simplicity of fabrication and resource requirements. Electrochemical-based aptasensors have mainly shown better sensitivity than others with exceedingly low detection limits. This paper critically reviews the progression of pesticide aptasensors throughout the development process, including the selection, characterization and modification of aptamers, the conceptual frameworks of integrating aptamers and biosensors, the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end users) criteria of different platforms and the future outlook.
  • 1.2K
  • 22 Dec 2020
Topic Review
Smartphone-Enabled Personalized Diagnostics
Smartphones are increasingly versatile thanks to the wide variety of sensor and actuator systems packed in them. Mobile devices today go well beyond their original purpose as communication devices, and this enables important new applications, ranging from augmented reality to the Internet of Things. Personalized diagnostics is one of the areas where mobile devices can have the greatest impact.
  • 1.2K
  • 24 Jun 2021
  • Page
  • of
  • 27
Academic Video Service