Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 8447 2023-02-10 07:09:46 |
2 layout Meta information modification 8447 2023-02-10 07:17:52 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Kamisah, Y.;  Saleh, M.S.M.;  Jalil, J.;  Zainalabidin, S.;  Asmadi, A.Y.;  Mustafa, N.H. Phytochemistry, Medicinal Uses and Pharmacological Activities of Parkia. Encyclopedia. Available online: (accessed on 14 June 2024).
Kamisah Y,  Saleh MSM,  Jalil J,  Zainalabidin S,  Asmadi AY,  Mustafa NH. Phytochemistry, Medicinal Uses and Pharmacological Activities of Parkia. Encyclopedia. Available at: Accessed June 14, 2024.
Kamisah, Yusof, Mohammed S. M. Saleh, Juriyati Jalil, Satirah Zainalabidin, Ahmad Yusof Asmadi, Nor Hidayah Mustafa. "Phytochemistry, Medicinal Uses and Pharmacological Activities of Parkia" Encyclopedia, (accessed June 14, 2024).
Kamisah, Y.,  Saleh, M.S.M.,  Jalil, J.,  Zainalabidin, S.,  Asmadi, A.Y., & Mustafa, N.H. (2023, February 10). Phytochemistry, Medicinal Uses and Pharmacological Activities of Parkia. In Encyclopedia.
Kamisah, Yusof, et al. "Phytochemistry, Medicinal Uses and Pharmacological Activities of Parkia." Encyclopedia. Web. 10 February, 2023.
Phytochemistry, Medicinal Uses and Pharmacological Activities of Parkia

Parkia is a genus of flowering plants belonging to the family Fabaceae (subfamily, Mimosoideae) with pan-tropical distribution. The word Parkia was named after the Scottish explorer Mungo Park, who drowned in the Niger River, Nigeria in January 1805. The genus Parkia (Fabaceae, Subfamily, Mimosoideae) comprises about 34 species of mostly evergreen trees widely distributed across neotropics, Asia, and Africa. 

Parkia Mimosoideae traditional medicine secondary metabolite

1. Introduction

Parkia is a genus of flowering plants belonging to the family Fabaceae (subfamily, Mimosoideae) with pan-tropical distribution [1]. The word Parkia was named after the Scottish explorer Mungo Park, who drowned in the Niger River, Nigeria in January 1805 [2]. Thirty-one species from this genus were reported in 1995 [3]. Another four more species were discovered in 2009 [4]. Out of these species, 10 species found in Asia, four in Africa, and 20 in neotropics. Meanwhile, according to a plant list (2018), 80 scientific names are recorded from the genus Parkia containing 41 accepted names and 39 synonym species (The Plant List, 2018). These plants bear fruits called pods. Each pod contains up to 25–30 seeds. Many species from Parkia have been reported to be rich in carbohydrate [5][6][7], protein [8][9][10] and minerals [11][12][13][14].

2. Traditional Medicinal Uses

Parkia species are being used across all tropical countries to cure different ailments. Virtually, all parts of Parkia plants are utilized traditionally for different medicinal purposes. The materials of different parts of Parkia plants are processed as paste, decoction, and juice for the treatment of various ailments (Table 1). Almost all reported Parkia species are used in different forms to cure diarrhea and dysentery [15]. Different parts of P. biglobosa, P. clappertoniana, P. roxburghii, and P. speciosa are reported to be traditionally used for the treatment of diabetes [16][17][18]. Furthermore, skin-related diseases, such as eczema, skin ulcers, measles, leprosy, wound, dermatitis, chickenpox, scabies, and ringworm are treated using leaves, pods, and roots of P. speciosa and P. timoriana [19][20][21]. The stem barks of P. bicolor, P. clappertoniana, P. biglobosa, P. roxburghii as well as roots of P. speciosa are applied in the form of paste and decoction to treat different skin problems [22][23][24][25]. Decoction and paste of stem bark, pod, or root of P. biglobosa and P. speciosa are used to treat hypertension [22][26][27]. Moreover, stem barks of P. bicolor, P. biglobosa and leaves of P. speciosa are used for severe cough and bronchitis [28][29][30]. These aforementioned uses suggested that Parkia plants are likely to contain constituents with broad and diverse biological activities, such as antidiabetic, antimicrobial, antihypertensive, and anti-inflammatory.
Table 1. The medicinal uses of plants from genus Parkia.

3. Phytochemistry of Genus Parkia

Among the numerous species of Parkia plant, the chemistry of only few are known. However, different parts of the reported ones have been validated as good sources of phenolic compounds [11][79][80], saponins [81][82][83], terpenoids [83][84][85], steroids [23][44][86], tannins [37][44][86], fatty acids [23][87], and glycosides [88][89][90].
Various phytochemicals are found in the stem barks, leaves, seeds, and pods of these plants. The stem bark of P. biglobosa is reported to contain phenols, flavonoids, sugars, tannins, terpenoids, steroids, saponins [11][44], alkaloid, and glycosides [83][89][91], while the leaves contain glycosides, tannins, and alkaloids in trace amount [11][23][92], in addition to flavonoids, phenols, and anthraquinones [93]. Phytochemical screening of the seeds shows the presence of saponins, alkaloids, flavonoids, polyphenols, terpenoids, glycosides and tannins [94][95]. Fermentation or roasting of P. biglobosa seeds results in the alteration of the bioactive components.
P. bicolor leaves contain chemical constituents similar to that of P. biglobosa such as glycosides, tannin, and alkaloids in trace amount [23]. The stem bark of P. bicolor contains alkaloids, tannins, saponins, glycosides, flavonoids, and terpenoids [83], while P. biglandulosa contains tannins, saponins, and glycosides, and P. filicoidea possesses flavonoids, sugars, saponins, and tannins [96]. The seed of P. javanica contains flavonoid, saponins, alkaloids, terpenoids, anthraquinones, steroids, and glycosides [90]. The pods are reported to have tannins, flavonoids, and saponins, all of which are significantly diminished when subjected to various processing methods, such as ordinary and pressure cooking methods [75][97]. Alkaloids, glycosides, saponins, and tannins are present in the whole plant of P. clappertoniana [79]. Phytochemical analysis of the leaves of P. platycephala revealed the presence of phenols, terpenoids, flavonoids [98], tannins and saponins [99]. Furthermore, flavonoids, alkaloids, phenols, and terpenoids were reported to be present in all parts of P. speciosa plant [85].
Phytochemicals (primary and secondary metabolites) are well known for their vast medicinal benefits to plants and human [100]. The primary metabolites—such as carbohydrate, proteins, chlorophyll, lipids, nucleic, and amino acids [101][102][103]—are responsible for plants’ biochemical reactions such as respiration and photosynthesis [102]. The secondary metabolites are majorly alkaloids, phenols, terpenoids, flavonoids, saponins, steroids, tannins, and glycosides, which play important roles in protecting the plants against damages and improving plant aroma, coloration and flavor [101][103], The phytochemicals are present in various parts of the plants especially in the three major parts viz. the leaves, stems and roots. Their percentage composition in each plant may vary depending on environmental conditions, variety and processing methods [101]. Previous studies have shown that phenolic compounds are the most abundant and widely distributed phytoconstituents (45%), followed by steroids and terpenoids (27%), and alkaloids (18%) [101][104]. Alkaloids, flavonoids, tannins, and phenolic compounds are the most common constituents that have been studied in phytochemistry [104][105]. Several compounds from these classes have been identified and investigated from Parkia plants for various pharmacological activities. Despite the enormous reports on the phytochemical screening of different species from the genus Parkia, structure identification and purification of compounds from these species are scarcely reported compared to other genera. The compounds were identified using high-performance liquid chromatography with diode-array detector (HPLC-DAD), liquid chromatography mass spectrometry (LCMS), flow analysis-ionization electrospray ion trap tandem mass spectrometry (FIA-ESI-IT-MS), gas chromatography time-of-flight mass spectrometry (GC/ToF-MS), high-performance liquid chromatography-electrospray ion mass spectrometry (HPLC-ESI-MS), and chromatographic purification from the fraction and characterization through nuclear magnetic resonance (NMR).

3.1. Polyphenolic Compounds

Phenolic compounds found in Parkia species are grouped into simple phenol (10 and 31), phenolic acids 2941, flavone 1519 and 24, flavanone 2526, flavonol 1114 and 2022, methoxyflavonol 23, as well as flavanol 110 (Table 2). Phenolic acids are mostly found in the pods and edible parts of Parkia, while polyphenolic compounds are present in the leaves, stem barks, roots, or seeds. The most commonly reported flavonoid in Parkia species are flavanol 1 and its isomer 8, which are obtained from the pod and bark of P. speciosa and P. biglobosa, respectively [106][107][108] and the remaining flavanols 1118 are mainly galloylated catechins. Compound 11 is isolated from ethyl acetate fraction of P. roxburghii pod [18], while compounds 1218 are identified from the ethyl acetate fraction of root/stem of P. biglobosa [18]. One methoxyflavonol 23, two flavanone 2627 and isoflavones 2728 are identified in the edible parts of P. javanica [108]. A new flavanone, naringenin-1-4′-di-O-ß-D-glucopyranoside 26 is isolated from n–butanol fraction of P. biglobosa [109], while a new phenylpropanoid is elucidated as 4-(3-hydroxypropyl)benzyl nonanoate from the leaves of P. javanica [110]. Isolation of compounds 4243 for the first time as a pure compound was reported from the ethanol extract of P. biglobosa bark [111]. The structures of these compounds are illustrated in Figure 1 and Figure 2.
Figure 1. Structural formulas of polyphenolics 128, as previously listed in Table 2.
Figure 2. Structural formulas of polyphenolics 2946, as previously listed in Table 2.
Table 2. Phytochemical compounds from Parkia.

3.2. Terpenoid and Steroid

To date, few terpenoid compounds have been reported in Parkia plants. Most of these compounds were identified from barks, roots, leaves, and seeds of Parkia plants. One is monoterpenoid 50 with two of its glucosides 57 and 58, a diterpene 49, while the rest are triterpenoid 49 and 5156 (Table 2 and Figure 3). Seven out of the triterpenoids 5258 were reported as new compounds. Only 49 is reported in three species (P. biglobosa, P. bicolor, and P. speciosa). Two of the new compounds 57 and 58 are iridoid type of terpenoidal glycoside purified from methanol extract of P. javanica, together with ursolic acid and other steroidal compounds [88]. Compounds 5256 are isolated through different chromatographic techniques from 80% methanol extract of P. bicolor root, with a known diterpene 59 and a benzene glucoside 105. These compounds are reported to exhibit moderate antiproliferative activity with median inhibitory concentration (IC50) ranging from 48.89 ± 0.16 to 81.66 ± 0.17 µM [118].
Figure 3. Structural formulas of terpenoids 4959 and steroids 6066, as previously listed in Table 2.
Steroidal compounds are also reported in the genus of Parkia (Table 2 and Figure 3). β-Sitosterol (60) is one of the major components in P. speciosa [120] and P. biglobosa seeds [121]. The steroid together with stigmasterol are purified from recrystallization of chloroform/methanol fraction of P. speciosa seeds. Its composition in P. biglobosa seeds was reported to be about 377 mg/100 g dry weight [122]. It is also purified from methanol extract of P. javanica leaves [88]. Apart from 60, 61, and 65, which are present in P. javanica and/or P. biglobosa, all other steroids 6264 and 66 reported from different studies are found in P. speciosa seeds. Other than β-sitosterol (60), stigmasterol (61), and campesterol (65) are also among the numerous compounds identified from the seeds of P. speciosa [117][119][120][124]. The percentage composition of 60, 61, 62 and a triterpenoid 49 in the plant was reported as 3.42%, 2.18%, 2.29%, and 0.71% w/w, respectively [85]. In the case of P. biglobosa, the percentage composition of 60, 61 and 62 in the seeds is higher with values of 55.7%, 3.42%, 37.1% for the unfermented, and 56.8%, 3.38%, 35.9% for the fermented, respectively, indicating that fermentation process may lower 61 and 62, but increases 60 contents [129]. Meanwhile, Akintayo (2004) had recorded 60 as the most abundant compound in P. biglobosa seeds, constituting approximately 39.5% w/w. Compound 60 was isolated as a pure compound through column chromatographic separation of benzene fraction of P. bicolor leaves [88].

3.3. Miscellaneous Compounds

In addition to polyphenolic and terpenoids, several other compounds that are mainly volatile including aldehydes, esters, pyrazines, ketones, fatty acids, benzenes, alcohols, amines, sulfides, alkanes, and alkenes have been reported from Parkia species (Table 2). These compounds are identified mainly from the seeds. Compound 81 is identified from the natural product for the first time in pentane/dichloromethane fraction of P. speciosa seed using GC/ToF-MS [125]. A greater number of these compounds is identified through phytochemical quantification using different spectroscopic methods. Seven constituents are detected from the fresh seeds of P. speciosa through GC/ToF/MS and the compounds are dominated by linear polysulfide, alcohol, and 3′-thiobis-didodecyl ester. Other major compounds include palmitic acid, arachidonic acid, linoleic acid, linoleic acid chloride, and myristic acid [124]. However, cyclic polysulfides are the major constituents found in cooked P. speciosa seeds (Figure 4) [125]. In addition, some minor components, such as 8284 are also identified. Meanwhile, 132 content in P. speciosa seed was reported to be 4.15 mg/100 g [85], but that of P. biglobosa in a recent study was found to be much higher (53.47 mg/100 g). Phospholipid content of P. biglobosa seeds was about 451 mg/100 g [122]. The seeds also contain palmitic acid, stearic acid, oleic acid, arachidic acid, and linoleic acid, the most abundant fatty acid [22][121][130]. Similar fatty acids are also reported in the raw seeds of P. roxburghii chloroform/methanol extract, in addition to total free phenol (0.56 g/100 g seed flour) and tannins (0.26 g/100 g seed flour) contents [87].
Figure 4. Structural formulas of cyclic polysulfides 8193, as previously listed in Table 2.

4. Pharmacological Activities of Parkia Species

Numerous bioactive constituents such as phenolics, flavonoids, terpenoids, and volatile compounds present in Parkia species may account for its various health benefits, and therefore responsible for the vast pharmacological properties (Table 3). However, only few species have been extensively studied.
Table 3. Pharmacological activities of Parkia species extracts and fractions.

4.1. Antimicrobial Activity

Various parts of many species of Parkia have good antimicrobial activities. They are most active against S. aureus and E. coli (Table 3). So far, there is still no clinical study conducted on the plants investigating the activity. Enormous reports have been made on antimicrobial activity of different parts of P. biglobosa such as leaves [23][42][131][186][187][188][189], stem barks [42][45][79][89][91][186][188][189][190][191], seeds [192], roots [44][82][193] and pods [131][194]. Furthermore, the stem barks and leaves of P. clappertoniana aqueous and methanol extracts investigated on some Gram-positive and Gram-negative bacteria revealed that both stem barks and leaves were effective in all tested organisms, but methanol extract was more potent [49]. The ethanol extract of both leaves and barks demonstrated growth inhibitory effects on multi-drug resistant Salmonella and Shigella isolates [51]. The ethanol extract of P. platycephala seeds tested against six bacteria strains and three yeasts showed no antimicrobial activity [195]. However, lectin obtained from the seed was reported to significantly enhance antibiotic activity of gentamicin against S. aureus and E. coli multi-resistant strains due to interaction between carbohydrate-binding site of the lectin and the antibiotic [196].
In P. speciosa, the water suspension of the seeds displays some remarkable inhibitory activity against bacteria isolated from the moribund fishes and shrimps—S. aureus, A. hydrophila, S. agalactiae, S. anginosus and V. parahaemolyticus—but no detectable activity against E. coli, V. alginolyticus, E. tarda, C. freundii, and V. vulnificus [132]. The methanol, chloroform, and petroleum ether extracts of the seeds demonstrate growth inhibitory effect against H. pylori [137], while the ethyl acetate extract against E. coli, but no effect on S. typhi, S. sonnei, and S. typhimurium [137]. The antimicrobial activity of P. speciosa is attributable to the presence of cyclic polysulfides 85 and 9294 in the seeds [126]. However, possible mechanism of the polysulfides was not elucidated. Both pod extract and its synthesized silver nanoparticles exhibit antibacterial activity, with the latter shows higher activity against P. aeruginosa [134]. A similar antibacterial activity is also seen with aqueous extract of P. speciosa leaves and its silver nanoparticles against S. aureus, B. subtilis, E. coli, and P. aeruginosa [197]. Its bark methanol extract inhibits the growth of Gloeophyllum trabeum, but not Pycnoporus sanguineus, which effect is not seen with both sapwood and heartwood of the plant [135]. Its ethyl acetate extract of the peel also shows four times higher activity against S. aureus and three times higher against E. coli than streptomycin, but n-hexane extract exhibits lower activity [133].
Various parts of P. timoriana inhibit growth of B. cereus, V. cholerae, E. coli, and S. aureus [198]. Its leaf extract exhibits significant growth inhibitory effect against E. coli, V. cholerae, S. aureus, and B. cereus [199], while its gold and silver nanoparticles from dried leaves inhibit S. aureus growth. The activity is believed to be attributable to the accumulation and absorption of the gold and silver nanoparticles into S. aureus cell wall [140]. The methanol extract and semi-polar fractions (chloroform and ethyl acetate) of the bark demonstrate significant inhibitory effects against Neisseria gonorrhoeae. The chloroform extract shows the best activity [76]. The aqueous extract of the seed, leaf and skin pod also possess antimicrobial activity [141].
Acetone, ethanol and aqueous extracts of P. biglandulosa stem bark were among the plant extracts that show the highest antimicrobial activity against bacteria and fungi [47] as well as plant pathogenic bacteria [200]. The methanol extract of the leaves also shows remarkable growth inhibition against E. coli, P. aeruginosa, and S. aureus [142]. Investigation on P. bicolor indicates that ethyl acetate, ethanol, and aqueous extracts of the leaves demonstrate a concentration-dependent growth inhibitory effect against some Gram-positive of bacteria such as E. coli, S. aureus, P. aeruginosa, A. niger, B. cereus, and a fungus, C. utilis [23]. Methanol, ethyl acetate, and water extracts of the root also exhibit different degrees of inhibition against some common human pathogenic bacteria including C. diphtheriae, K. pneumoniae, P. mirabilis, S. typhi, and S. pyogenes [28]. The possible mechanism of the antimicrobial activity of Parkia plants are yet to be determined. However, terpenoids from the plants could induce lipid flippase activity in the bacterial cellular membrane which then enhances membrane damage for a better cell penetration [201]. Other possible actions could be by damaging bacterial protein, inhibiting DNA gyrase and DNA synthesis, which are yet to be confirmed in further studies.
Collectively, it can be concluded that the antimicrobial properties of Parkia plants depend on the species and parts of Parkia as well as solvent (polar and non-polar). Most of the published report are in in vitro evaluations, which do not assure the same outcomes in animal models and clinical setting. In the rise of resistant pathogenic bacteria to antimicrobial therapy, it is an urgent need to develop new antimicrobial agents, and phytoconstituents from plants like Parkia could be good candidates.

4.2. Antidiabetic Activity

P. speciosa is the most studied among other species for antidiabetic activity. Six studies comprising three in vitro and three in vivo studies have demonstrated hypoglycemic activity of the plant, but no clinical study has been conducted. Most of the studies have studied the activity in the seeds and pods [120][144][145][202].
Pericarps from P. speciosa show significant inhibitory activity (IC50 0.0581 mg/mL; 89.46%) against α-glucosidase [202], an enzyme responsible for breaking down starch and polysaccharide into glucose [203]. The seeds also show inhibitory activity but at lower percentage (45.72%) [202]. In another study, the ethanol extract of the rind had the highest α-glucosidase inhibitory activity followed by the leaf and seed with IC50 of 4596 ppm, 54,341 ppm, and 67,425 ppm, respectively as compared with acarbose having 162,508 ppm [145].
An in vivo study conducted on both seeds and pods of P. speciosa in alloxan-induced diabetic rats, indicated that only chloroform extract of both pods and seeds exhibited strong glucose-lowering activity. The hypoglycemic activity of the seeds was higher than that of the pods (57% and 36%, respectively) [144]. A mixture of 66% β-sitosterol 60 and 34% stigmasterol 61 is believed to be responsible for the hypoglycemic effect of the seeds—demonstrated 83% decrease in blood glucose level (100 mg/kg body weight) compared to glibenclamide (111% at 5 mg/kg bw) [120]. Similarly, stigmast-4-en-3-one 63 was identified as the compound responsible for the 84% reduction in blood glucose level at 100 mg/kg bw of the pod extract of P. speciosa [123]. Both compounds (β-sitosterol and stigmasterol) are believed to reduce blood glucose level by regenerating remnant β-cells and stimulating insulin release [146] via augmentation of GLUT4 glucose transporter expression [147]. Stigmasterol is also reported to inhibit the ß-cells apoptosis [204].
In other Parkia species, methanol crude extracts and fractions of P. timoriana pods showed significant α-glucosidase and α-amylase inhibitory activities in streptozotocin-induced diabetic rats. Ethyl acetate fraction had the highest α-glucosidase inhibitory and moderate α-amylase inhibitory activities, with maximal reduction in blood glucose level back to normal observed on day 14 at the dose of 100 mg/kg body weight [18]. α-Amylase functions to hydrolyze starch into maltose and glucose [205]. Bioassay-guided chemical investigation of the most active ethyl acetate fraction revealed epigallocatechin gallate 4 and apigenin 14 were responsible for the antidiabetic activity [18].
Oral administration of P. biglobosa methanol and aqueous extracts of fermented seeds exhibited different degrees of hypoglycemic effects on fasting plasma glucose when tested on alloxan-induced diabetic rats after four weeks [206][207]. Oral administration of P. biglobosa seeds methanol extract (1 g/kg body weight) lowered blood glucose level by 44.1% at 8 h as compared with glibenclamide (37.9%) in alloxan-induced diabetic rats. Its chloroform fraction exerted maximum glucose-lowering effect (65.7%), while n-hexane fraction had the lowest (4.7%) [86]. As previously mentioned, similar underlying mechanism of the hypoglycemic activity of the plant species is suggested which is via an improvement in pancreatic islet functions to release insulin, while abolishing insulin resistance [208]. For future study directions, investigations on the effects of the plant extracts and pure compounds on insulin release and signaling pathways that might be involved in the glucose-lowering properties could be conducted. The compounds should also be studied clinically.

4.3. Anticancer Activity

Cancer is one of the diseases that cause death of millions worldwide. Dietary intake of raw seeds was also reported to significantly lower the occurrence of esophageal cancer in southern Thailand [209]. The methanol extract of P. speciosa seeds exhibited a moderate antimutagenic activity in the Ames test [210], but weak activity in Epstein–Barr virus inhibitory assay [211]. The methanol extract of the seed coats demonstrated selective cytotoxicity against MCG-7 and T47D (breast cancer), HCT-116 (colon cancer) and HepG2 (hepatocarcinoma) cells, while its ethyl acetate fraction only showed selective cytotoxicity against MCF-7, breast cancer cells [152].
Substances that enhance mitogenesis of lymphocytes may be useful as antitumor or antiproliferative and immunomodulator agents [212]. Lectin obtained from the P. speciosa seeds exerted mitogenic activity in both rat thymocytes and human lymphocytes by stimulating the incorporation of thymidine into DNA cell, which activity was comparable to the known T-cell mitogens like pokeweed mitogen, concanavalin A and phytohemagglutinin [6][213]. Lectins isolated from the seeds of P. biglandulosa and P. roxburghii have demonstrated antiproliferative effect on murine macrophage cancer cell lines—P 388DI and J774. The seed extract P. roxburghii also inhibits the proliferation of B-cell hybridoma cell line, HB98 [150], and HepG2 cells without affecting the normal cells [90]. The monosaccharide saponins 5255 isolated from P. bicolor root also exhibit moderate antiproliferative effect IC50 ranging from 48.49 to 81.66 µM [118]. To researchers' knowledge, the anticancer effects of Parkia extracts were only investigated in cell lines—limited to cell growth inhibition—not yet studied in in vivo models.
An in vitro study on human cancer cell lines has shown that the methanol extracts of P. biglobosa and P. filicoidea exhibit different degrees of antiproliferative activities on T-549 and BT-20 (prostate cancer), PC-3 (acute T cell leukemia Jurka), and SW-480 (colon cancer) at concentrations of 20 and 200 µg/mL. P. biglobosa also exhibits higher cytotoxic activity against all types of cancer cell lines used compared with P. filicoidea [153]. The antitumor property could be attributable to the antiangiogenic activity of some species of Parkia such as P. biglandulosa and P. speciosa extracts [152][167]. Angiogenesis or neovascularization is involved in metastasis of solid tumors. Methanol extract of the P. speciosa fresh pods was reported to exhibit antiangiogenic activity by more than 50% inhibition of microvessel outgrowth in rat aortae and human umbilical vein endothelial cells forming capillary-like structures in Matrigel matrix. The effect may be attributable to the ability of the compounds in the extract to form vacuoles in the cells [152], which is essential in maintaining the viability of the cells, therefore beneficial in the treatment of cancer owing to its capacity to prevent tumor neovascularization [214].
The plant bioactive compounds could also possibly increase apoptotic signaling pathway by elevating caspase activation as similarly shown by the same compounds in other plant species [215], as well as a direct inhibition on DNA synthesis, related to the ability to inhibit the expressions of several tumor- and angiogenesis-associated genes. Future studies should explore on the possible mechanism of action that are responsible for the anticancer activity. Additionally, future research on human studies is needed to confirm the outcomes seen in the laboratories.

4.4. Antihypertensive Activity

Antihypertensive activity of P. biglobosa seeds has been demonstrated in both animals and human. Only a clinical study was conducted which observed lower blood pressure, blood glucose and heart rate, high level of magnesium as well as improved lipid profile in patients with hypertension consuming fermented seeds of P. biglobosa in comparison with the non-consumption group [159]. Administration of 1.9 mg/mL of seed extract of P. biglobosa lowers the arterial blood pressure level in a rat model, possibly due to its ability to slow down the heart rate [216] and to induce vascular relaxation [158]. The latter effect is also seen with roasted seeds of the plant [158]. Other than the seeds, P. biglobosa stem bark aqueous extract also demonstrates good hypotensive effect in adrenaline-induced hypertensive female rabbits, which effect is comparable to antihypertensive drugs, propranolol and nifedipine [157]. The hypotensive properties of P. biglobosa could be owing to its main phytochemicals−phenolics and flavonoids. Catechin and its derivatives are among the most common compounds detected in the plant. These compounds promote vasorelaxation [217] by modulating nitric oxide availability [218] and inhibiting angiotensin-converting enzyme (ACE) [219], in addition to a reduction in oxidative stress [220], leading to blood pressure-lowering effects of the plant extract. The fermented seeds also decrease plasma triglyceride and cholesterol levels in Tyloxapol-induced hyperlipidemic rats [221], and platelet aggregation [222].
P. speciosa empty pod extract has been reported to prevent the development of hypertension in rats given L-NG-nitroarginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, possibly due to its ability to prevent nitric oxide loss [122], which is dependent on the availability of endothelial nitric oxide synthase [223], as well as to inhibit ACE and oxidative stress and inflammation [112]. Both oxidative stress and inflammation are known to play important roles in the pathogenesis of hypertension (Siti et al. 2015). Active peptide obtained from hydrolyzed P. speciosa seeds displays ACE-inhibitory effect, ranging from 50.6% to 80.2%, which effect is not observed in the non-hydrolyzed seeds, possibly due its long and bulky structure [155][156]. However, the study of Khalid and Babji (2018) has demonstrated that the aqueous extract of the seeds also possesses ACE inhibitory activity [154]. These studies suggest that the blood pressure-lowering effect of the P. speciosa is most likely due to its ACE inhibitory property and nitric oxide regulation, attributable to its rich contents of polyphenols and the presence of peptide. Future studies should involve isolation of the active compounds which have a potential to be developed as a specific inhibitor of ACE. Other possible mechanisms—specific receptor antagonism, such as adrenoceptors and calcium channels, or modification of signaling pathways—of blood pressure-lowering effects of the plant extract or compounds should be explored further.

4.5. Antidiarrheal Activity

The antidiarrheal effect of Parkia plants has been investigated using many models such as castor oil- and magnesium-induced diarrhea. The aqueous extract of P. filicoidea stem barks reduces the frequency of stooling in rats with castor oil-induced diarrhea, comparable with loperamide [161]. The aqueous and ethanol extract of P. biglobosa leaves and stem barks also exhibit similar antidiarrheal activity to loperamide, seen as a reduction in stooling frequency and intestinal volume [35][91][160]. These effects could be attributable to its inhibitory capacity on the propulsive movement of gastrointestinal tract smooth muscles [91]. Medicinal plants are believed to exert antidiarrheal activity by enhancing the opening of intestinal potassium channel and stimulating Na+/K+-ATPase activity, as well as decreasing intracellular calcium concentration, which then promotes gastrointestinal smooth muscle relaxation, leading to diminished diarrhea [224][225][226]. The potential of these plants as agents to reduce diarrhea can be explored further in irritable bowel syndrome or chemotherapy-induced diarrhea. Their effects on intestinal mucosal barrier, tight junction proteins and inflammatory cytokines among others can be examined.

4.6. Antiulcer Activity

The gastroprotective effect of Parkia plants was seen in three species which were P. speciosa, P. platycephala and P. biglandulosa (Table 3). The leaves and seeds of P. speciosa protected against ethanol- and indomethacin-induced gastric ulcer in rats, observed by reductions in the gastric ulcer index and acidity of gastric juice [162][163]. Lesser collagen and fibrotic ulcer were significantly diminished in the extract-treated group [163]. The ethanol extract of P. platycephala also showed protective effect in gastric mucosal injury models induced by ethanol, ischemia-reperfusion, and ethanol-HCl. However, the extract could not protect against indomethacin-induced gastric lesion [164]. These plants are rich in flavonoids. The compounds like catechin and quercetin confer antiulcer effects possibly by eradicating the formation of ROS and modulating mucin metabolism in the gastrointestinal tract [227][228][229]. Other possible protective mechanisms could be by reducing gastric acid secretion, thereby decreasing gastric acid pH, as seen with cinnamic caffeic, p-coumaric or ferulic acids—the compounds that are present in the plants [230]. Studies on other possible effects of the extracts or bioactive components such as proton pump inhibition could be of interest. In future, the compounds that are responsible for the protective effects should be identified and the possible protective signaling mechanisms should be elucidated. Moreover, clinical trials can be performed to assess the potential use of Parkia extracts as an antiulcer agent.

4.7. Antianemic Activity

The fermented seeds of P. biglobosa are a rich source of essential minerals such as iron, calcium, thiamine, and phosphorus [33] which are necessary in forestalling either iron or non-iron deficiency anemia. Therefore, the antianemic capacity of P. biglobosa could be owing to its nutritional composition. The fermented seeds of P. biglobosa in combination with other fermented products were reported to be beneficial in the management of anemia as it increased hemoglobin, red blood cells, white blood cells, and packed cell volume [165]. The ethanol extract of P. speciosa seeds were also investigated in NaNO2-induced anemic mice. At doses of 400 and 700 mg/kg, an elevation of hemoglobin levels was noted to 0.92 and 0.82 g/dL, respectively [166]. The exact mechanism of how P. speciosa acts to decrease anemia is still unclear. It could be due to its rich source of the minerals, particularly the iron [212]. Another possible mechanism would be stimulation of erythropoiesis process. Both extracts of P. biglobosa P. biglobosa and P. speciosa can be developed as an alternative iron supplement. However, the effectiveness should be evaluated clinically.

4.8. Anti-Inflammatory Activity

Inflammatory reaction is involved in almost all clinical manifestation. Hence, anti-inflammatory activity of certain plant extracts could be of benefit. Anti-inflammatory activity of P. biglobosa stalk [172], seeds and stem bark [29], P. speciosa pods [222][223] and seeds [62], as well as P. platycephala seeds [175] have been reported using various models of inflammation.
The protective effects of P. biglobosa is believed via its inhibitions on the lipoxygenase and cyclooxygenase pathways [172], leading to inhibition of pro-inflammatory cytokine release and stimulation of anti-inflammatory cytokine [173], as well as increment on membrane stabilization [174]. While the P. speciosa exerts its anti-inflammatory by downregulating nuclear factor kappa B cell (NF-κB) and p38 mitogen-activated protein kinase (MAPK) pathways [222][223]. It is obvious that the plant bioactive components attenuate inflammation by regulating inflammatory and MAPK signaling pathways, which could lead to reduced formation of inflammatory mediators such as cytokines. To date, no study has identified the anti-inflammatory compounds from Parkia, which warrants further studies on this aspect, either in experimental animals or human studies.

4.9. Antioxidant Activity

Polyphenolic compounds present in plant foods have been reported to be responsible for their antioxidant activity due to their ability to serve as a hydrogen donor and reducing agent (Amorati and Valgimigli 2012). Both fermented and unfermented seeds of P. biglobosa have been reported to contain an appreciable amount of phenolic contents [179][184]. P. timoriana pods are also rich in total phenolic and flavonoid contents [178]. The antioxidant capacity of the leaves and seeds of P. speciosa has been reported to be relatively lower than that of the empty pods and seed mixture, suggesting that the pods possess higher antioxidant contents than other parts of the plant [85][214]. The difference in geographical location may affect the composition of the antioxidant compounds in plants. It was reported that P. speciosa seeds collected from central Peninsular Malaysia had higher antioxidant capacity than the southern and southwestern regions [181]. The compounds present in the plants attenuate oxidative stress possibly by activating Nrf2/Keap1 and MAPK signaling pathways, leading to enhanced expressions of Nrf2 and antioxidant enzymes, such as heme oxygenase-1 [231]. P. speciosa extracts of seed coats and pods could also reduce the risk of hemolysis by inhibiting Heinz body production in the erythrocytes incubated with a hemolytic agent [182], indicating the ability of the extracts to inhibit oxidative destruction of erythrocyte. The finding suggests a potential of the plant extract to reduce hemolytic jaundice, which warrants further research.

4.10. Other Pharmacological Activities

Other than previously mentioned activities, the P. biglobosa extract has also been demonstrated to have antimalarial effect [11], whereas P. clappertoniana [53] and P. biglobosa [168] show nephro- and hepatoprotective effects, respectively (Table 3). P. pendula seeds also enhance wound healing in immunosuppressed mice [169]. However, extensive studies regarding these effects were not performed. Further studies need to be conducted to explore the possible mechanisms that are involved in the aforementioned beneficial effects.

5. Toxicity

Daily consumption of cooked pods of P. roxburghii does not impose any significant adverse effect [232]. However, eating raw pods may result in bad breath owing to its rich content in volatile disulfide compounds, which are exhaled in breath and the odor can persist for several hours (Meyer, 1987). Many substances have been identified or isolated from Parkia seed, such as lectins, non-protein amino acids, and alkaloids [233]. However, no acute mortality and observable behavioral change were recorded at doses up to 2000 mg/kg ethyl acetate fraction of P. roxburghii pod in rats [18]. Investigation on acute and sub-acute toxicity profiles of the aqueous and ethanol extracts of the stem bark of P. biglobosa showed that the oral median lethal dose (LD50) was higher than 5000 mg/kg for both extracts in rats [84]. However, in another report, LD50 values of the leaves, stems and roots in an acute toxicity study were within the range of 500–5000 mg/kg body weight of fish, suggesting that they are only slightly toxic and, therefore, not potentially dangerous. The adverse effects included respiratory distress and agitated behavior [234]. Apart from the barks of P. biglobosa, the pods also possess the piscicidal activity that can be used in the management and control of fishponds to eliminate predators [234][235]. Fatty acids and oils identified from the seeds of P. biglobosa and P. bicolor were reported to be non-toxic [22].
The aqueous extract of P. clappertoniana seeds showed no observable maternal and developmental toxicity at 100–500 mg/kg when given orally to Sprague-Dawley rats and mice at different gestational age ([17]. P. platycephala leaves at 1000 mg/kg on the other hand, caused decreases in body mass, food and water consumption in rats. It also shortened the proestrus and prolonged diestrus phases, as well as reduced uterine weight, suggestive of possible alterations on hormonal levels, but no obvious toxicity on other organs [98]. Oral administration of the leaves of P. speciosa for 14 days showed no significant histopathological toxicity or mortality in rats at up to 5000 mg/kg [162]. In vitro, the plant pods (100 μg/mL) showed no significant cytotoxic effect on normal cell lines [152]. Consumption of the seeds up to 30 pieces in a serve does not produce any adverse effects [214].


  1. Heymann, E.W.; Lüttmann, K.; Michalczyk, I.M.; Saboya, P.P.P.; Ziegenhagen, B.; Bialozyt, R. DNA fingerprinting validates seed dispersal curves from observational studies in the neotropical legume Parkia. PLoS ONE 2012, 7, e35480.
  2. Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide, version 4; World Agroforestry Centre: Nairobi, Kenya, 2009.
  3. Luckow, M.; Hopkins, H.C.F. A cladistic analysis of Parkia (Leguminosae: Mimosoideae). Am. J. Bot. 1995, 82, 1300–1320.
  4. Neill, D.A. Parkia nana (Leguminosae, Mimosoideae), a new species from the sub-Andean sandstone cordilleras of Peru. Novon A J. Bot. Nomencl. 2009, 19, 204–208.
  5. Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem. 2001, 49, 3101–3105.
  6. Suvachittanont, W.; Peutpaiboon, A. Lectin from Parkia speciosa seeds. Phytochemistry 1992, 31, 4065–4070.
  7. Ogunyinka, B.I.; Oyinloye, B.E.; Osunsanmi, F.O.; Kappo, A.P.; Opoku, A.R. Comparative study on proximate, functional, mineral, and antinutrient composition of fermented, defatted, and protein isolate of Parkia biglobosa seed. Food Sci. Nutr. 2017, 5, 139–147.
  8. Alabi, D.A.; Akinsulire, O.R.; Sanyaolu, M.A. Qualitative determination of chemical and nutritional composition of Parkia biglobosa (Jacq.) Benth. Afr. J. Biotechnol. 2005, 4, 812–815.
  9. Fetuga, B.L.; Babatunde, G.M.; Oyenuga, V.A. Protein quality of some unusual protein foodstuffs. Studies on the African locust-bean seed (Parkia filicoidea Welw.). Br. J. Nutr. 1974, 32, 27–36.
  10. Hassan, L.G.; Umar, K.J. Protein and amino acids composition of African locust bean (Parkia biglobosa). Trop. Subtrop. Agroecosyst. 2005, 5, 45–50.
  11. Builders, M.; Alemika, T.; Aguiyi, J. Antimalarial Activity and isolation of phenolic compound from Parkia biglobosa. IOSR J. Pharm. Biol. Sci. 2014, 9, 78–85.
  12. Ifesan, B.O.T.; Akintade, A.O.; Gabriel-Ajobiew, R.A.O. Physicochemical and nutritional properties of Mucuna pruriens and Parkia biglobosa subjected to controlled fermentation. Int. Food Res. J. 2017, 24, 2177–2184.
  13. Iheke, E.; Oshodi, A.; Omoboye, A.; Ogunlalu, O. Effect of fermentation on the physicochemical properties and nutritionally valuable minerals of locust bean (Parkia biglobosa). Am. J. Food Technol. 2017, 6, 379–384.
  14. Abdullahi, I.N.; Chuwang, P.Z.; Anjorin, T.S.; Ikemefuna, H. Determination of Mineral Accumulation through Litter Fall of Parkia Biglobosa Jacq Benth and Vitellaria Paradoxa Lahm Trees in Abuja, Nigeria. Int. J. Sci. Res. Agric. Sci. 2015, 2, 0016–0021.
  15. Singh, N.P.; Gajurel, P.R.; Rethy, P. Ethnomedicinal value of traditional food plants used by the Zeliang tribe of Nagaland. Indian J. Tradit. Knowl. 2015, 14, 298–305.
  16. Mondal, P.; Bhuyan, N.; Das, S.; Kumar, M.; Borah, S.; Mahato, K. Herbal medicines useful for the treatment of diabetes in north-east India: A review. Int. J. Pharm. Biol. Sci. 2013, 3, 575–589.
  17. Boye, A.; Boampong, V.A.; Takyi, N.; Martey, O. Assessment of an aqueous seed extract of Parkia clappertoniana on reproductive performance and toxicity in rodents. J. Ethnopharmacol. 2016, 185, 155–161.
  18. Sheikh, Y.; Maibam, B.C.; Talukdar, N.C.; Deka, D.C.; Borah, J.C. In vitro and in vivo anti-diabetic and hepatoprotective effects of edible pods of Parkia roxburghii and quantification of the active constituent by HPLC-PDA. J. Ethnopharmacol. 2016, 191, 21–28.
  19. Singh, M.K. Potential of underutilized legume tree Parkia timoriana (DC.) Merr. In Eco-restoration of Jhum fallows of Manipur. J. Pharmacogn. Phytochem. 2019, 8, 1685–1687.
  20. Roosita, K.; Kusharto, C.M.; Sekiyama, M.; Fachrurozi, Y.; Ohtsuka, R. Medicinal plants used by the villagers of a Sundanese community in West Java, Indonesia. J. Ethnopharmacol. 2008, 115, 72–81.
  21. Srisawat, T.; Suvarnasingh, A.; Maneenoon, K. Traditional medicinal plants notably used to treat skin disorders nearby Khao Luang mountain hills region, Nakhon si Thammarat, Southern Thailand. J. HerbsSpices Med. Plants 2016, 22, 35–56.
  22. Aiyelaagbe, O.O.; Ajaiyeoba, E.O.; Ekundayo, O. Studies on the seed oils of Parkia biglobosa and Parkia bicolor. Plant Foods Hum. Nutr. 1996, 49, 229–233.
  23. Ajaiyeoba, E. 0 Phytochemical and antibacterial properties of Parkia biglobosa and Parkia bicolor leaf extracts. Afr. J. Biomed. Res. 2002, 5, 125–129.
  24. Oladunmoye, M.K.; Kehinde, F.Y. Ethnobotanical survey of medicinal plants used in treating viral infections among Yoruba tribe of South Western Nigeria. Afr. J. Microbiol. Res. 2011, 5, 2991–3004.
  25. Rathi, R.S.; Misra, A.K.; Somnath, R.; Verma, S.K.; Singh, S.K. Potential of a lesser known tree species Parkia roxburghii G. Don of North East India. Indian For. 2012, 138, 476–479.
  26. Ong, H.C.; Ahmad, N.; Milow, P. Traditional Medicinal Plants Used by the Temuan Villagers in Kampung Tering, Negeri Sembilan, Malaysia. Stud. Ethno-Med. 2011, 5, 169–173.
  27. Ong, H.C.; Chua, S.; Milow, P. Ethno-medicinal plants used by the Temuan villagers in Kampung Jeram Kedah, Negeri Sembilan, Malaysia. Stud. Ethno-Med. 2011, 5, 95–100.
  28. Fotie, J.; Nkengfack, A.E.; Peter, M.G.; Heydenreich, M.; Fomum, Z.T. Chemical constituents of the ethyl acetate extracts of the stem bark and fruits of Dichrostachys cinerea and the roots of Parkia bicolor. Bull. Chem. Soc. Ethiop. 2004, 18, 111–115.
  29. Kouadio, F.; Kanko, C.; Juge, M.; Grimaud, N.; Jean, A.; N’Guessan, Y.T.; Petit, J.Y. Analgesic and antiinflammatory activities of an extract from Parkia biglobosa used in traditional medicine in the ivory coast. Phytother. Res. 2000, 14, 635–637.
  30. Ong, H.C.; Zuki, R.M.; Milow, P. Traditional Knowledge of Medicinal Plants among the Malay Villagers in Kampung Mak Kemas, Terengganu, Malaysia. Stud. Ethno-Med. 2011, 2011, 175–185.
  31. Lawal, I.O.; Uzokwe, N.E.; Igboanugo, A.B.I.; Adio, A.F.; Awosan, E.A.; Nwogwugwu, J.O.; Faloye, B.; Olatunji, B.P.; Adesoga, A.A. Ethno medicinal information on collation and identification of some medicinal plants in Research Institutes of South-west Nigeria. Afr. J. Pharm. Pharmacol. 2010, 4, 1–7.
  32. Henry, S.G.; Francis, A.; Kofi, A. Ethnobotanical survey of medicinal plants used for the treatment of diarrhoea and skin ulcer in the Brong Ahafo region of Ghana. J. Med. Plants Res. 2013, 7, 3280–3285.
  33. Campbell-Platt, G. African locust bean (Parkia species) and its west african fermented food product, dawadawa. Ecol. Food Nutr. 1980, 9, 123–132.
  34. Igoli, J.O.; Ogaji, O.G.; Tor-Anyiin, T.A.; Igoli, N.P. Traditional medicine practice amongst the Igede people of Nigeria. Part II. Afr. J. Tradit. Complementary Altern. Med. 2005, 2, 134–152.
  35. Agunu, A.; Yusuf, S.; Andrew, G.O.; Zezi, A.U.; Abdurahman, E.M. Evaluation of five medicinal plants used in diarrhoea treatment in Nigeria. J. Ethnopharmacol. 2005, 101, 27–30.
  36. Asuzu, I.U.; Harvey, A.L. The antisnake venom activities of Parkia biglobosa (Mimosaceae) stem bark extract. Toxicon 2003, 42, 763–768.
  37. Fred-Jaiyesimi, A.A.; Abo, K.A. Hypoglycaemic effects of Parkia biglobosa (Jacq) Benth seed extract in glucose-loaded and NIDDM rats. Int. J. Biol. Chem. Sci. 2009, 3, 545–550.
  38. Karou, S.D.; Tchacondo, T.; Djikpo Tchibozo, M.A.; Abdoul-Rahaman, S.; Anani, K.; Koudouvo, K.; Batawila, K.; Agbonon, A.; Simpore, J.; de Souza, C. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the Central Region of Togo. Pharm. Biol. 2011, 49, 1286–1297.
  39. Grønhaug, T.E.; Glæserud, S.; Skogsrud, M.; Ballo, N.; Bah, S.; Diallo, D.; Paulsen, B.S. Ethnopharmacological survey of six medicinal plants from Mali, West-Africa. J. Ethnobiol. Ethnomed. 2008, 4, 26.
  40. Abo, K.A.; Fred-Jaiyesimi, A.A.; Jaiyesimi, A.E.A. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J. Ethnopharmacol. 2008, 115, 67–71.
  41. Pare, D.; Hilou, A.; Ouedraogo, N.; Guenne, S. Ethnobotanical study of medicinal plants used as anti-obesity remedies in the nomad and hunter communities of Burkina Faso. Medicines 2016, 3, 9.
  42. Millogo-Kone, H.; Guissoe, P.I.; Nacoulma, O.; Traore, A.S. Study of the antibacterial activity of the stem bark and leaf extracts of Parkia biglobosa (Jacq.) Benth. on Satphylococcus aureus. Afr. J. Tradit. Complementary Altern. Med. 2006, 3, 74–78.
  43. Quansah, L.; Mahunu, G.K.; Tahir, H.E.; Mariod, A.A. Parkia biglobosa: Phytochemical Constituents, Bioactive Compounds, Traditional and Medicinal Uses. In Wild Fruits: Composition, Nutritional Value and Products; Springer: Berlin/Heidelberg, Germany, 2019; pp. 271–284.
  44. Udobi, C.E.; Onaolapo, J.A. Phytochemical analysis and antibacterial evaluation of the leaf stem bark and root of the African locust bean (Parkia biglobosa). J. Med. Plants Res. 2009, 3, 338–344.
  45. Abreu, P.M.; Martins, E.S.; Kayser, O.; Bindseil, K.U.; Siems, K.; Seemann, A.; Frevert, J. Antimicrobial, antitumor and antileishmania screening of medicinal plants from Guinea-Bissau. Phytomedicine 1999, 6, 187–195.
  46. Rupesh, P.; Pal, S.C.; Pavani, A.; Gadge, M.S. Quantitave estimation of the active constituents of Parkia biglandulosa by using HPTLC and FTIR. Int. J. Pharma Bio Sci. 2010, 1, 315–332.
  47. Khond, M.; Bhosale, J.D.; Arif, T.; Mandal, T.K.; Padhi, M.M.; Dabur, R. Screening of some selected medicinal plants extracts for in-vitro antimicrobial activity. Middle-East J. Sci. Res. 2009, 4, 271–278.
  48. Pingale, R.; Pokharkar, D.; Phadatare, S.P.; Gorle, A. Pharmacognostic Evaluation of Parkia biglandulosa bark. Int. J. Pharm. Phytochem. Res. 2016, 8, 1160–1163.
  49. Banwo, G.O.; Abdullahi, I.; Duguryil, M. The antimicrobial activity of the stem-bark and leaf of Parkia clappertoniana Keay family Leguminosae against selected microorganisms. Niger. J. Pharm. Res. 2004, 3, 16–22.
  50. Nwodo, N.J.; Ibezim, A.; Ntie-Kang, F.; Adikwu, M.U.; Mbah, C.J. Anti-trypanosomal activity of Nigerian plants and their constituents. Molecules 2015, 20, 7750–7771.
  51. Lawal, M.S.; Sani, A.M.; Dangmwan, D.S.; Yahaya, U. Antimicrobial potentials of Parkia clappertoniana Jacq, Boswellia dalzielli hutch and Carica papaya L. ethanolic extract on multi-drug resistant Diarrheal salmonallae and Shigellae Bacteria. Biochem. Mol. Biol. 2016, 1, 27.
  52. Muazu, J.; Kaita, M.H. A review of traditional plants used in the treatment of epilepsy amongst the Hausa/Fulani tribes of northern Nigeria. Afr. J. Tradit. Complementary Altern. Med. 2008, 5, 387–390.
  53. Boye, A. Nephroprotective and curative assessment of an aqueous seed extract of Parkia clappertoniana keay in gentamicin-induced renal damage in Sprague-dawley rats. Eur. J. Med. Plants 2014, 4, 234–248.
  54. Patrick-Iwuanyanwu, K.C.; Wegwu, M.O.; Okiyi, J.K. Hepatoprotective effects of African locust bean (Parkia clappertoniana) and negro pepper (Xylopia aethiopica) in CCl4-induced liver damage in wistar albino rats. Int. J. Pharmacol. 2010, 6, 744–749.
  55. Obata, O.O.; Aigbokhan, E.I. Ethnobotanical practices among the people of Okaakoko, Nigeria. Plant Arch. 2012, 12, 627–638.
  56. Van Andel, T.; Behari-Ramdas, J.; Havinga, R.; Groenendijk, S. The medicinal plant trade in Suriname. Ethnobot. Res. Appl. 2007, 5, 351–372.
  57. Ferreira, A.B.; Ming, L.C.; Haverroth, M.; Daly, D.C.; Caballero, J.; Ballesté, A.M. Plants used to treat malaria in the regions of Rio Branco-Acre state and southern Amazonas state—Brazil. Int. J. Phytocosmetics Nat. Ingred. 2015, 2, 9.
  58. Mitra, R.; Orbell, J.; Muralitharan, M. Medicinal plants of Malaysia. Asia Pac. Biotech News 2007, 11, 105–110.
  59. Siew, Y.Y.; Zareisedehizadeh, S.; Seetoh, W.G.; Neo, S.Y.; Tan, C.H.; Koh, H.L. Ethnobotanical survey of usage of fresh medicinal plants in Singapore. J. Ethnopharmacol. 2014, 155, 1450–1466.
  60. Ripen, J.E.; Noweg, G.T. Economic valuation of medicinal plants in Jagoi Area, Bau, Malaysia. Procedia Soc. Behav. Sci. 2016, 224, 124–131.
  61. Eswani, N.; Kudus, K.A.; Nazre, M.; Noor, A.G.A.; Ali, M. Medicinal plant diversity and vegetation analysis of logged over hill forest of Tekai Tembeling Forest Reserve, Jerantut, Pahang. J. Agric. Sci. 2010, 2, 189.
  62. Sonia, N.; Dsouza, M.R. Alisha Pharmacological evaluation of Parkia speciosa Hassk for antioxidant, anti-inflammatory, anti-diabetic and anti-microbial activities in vitro. Int. J. Life Sci. Spec. Issue 2018, 11, 49–59.
  63. Bahtiar, A.; Vichitphan, K.; Han, J. Leguminous plants in the Indonesian Archipelago: Traditional uses and secondary metabolites. Nat. Prod. Commun. 2017, 12, 461–472.
  64. Batoro, J.; Siswanto, D. Ethnomedicinal survey of plants used by local society in Poncokusumo district, Malang, East Java Province, Indonesia. Asian J. Med Biol. Res. 2017, 3, 158–167.
  65. Samuel, A.J.S.J.; Kalusalingam, A.; Chellappan, D.K.; Gopinath, R.; Radhamani, S.; Husain, H.A.; Muruganandham, V.; Promwichit, P. Ethnomedical survey of plants used by the Orang Asli in Kampung Bawong, Perak, West Malaysia. J. Ethnobiol. Ethnomed. 2010, 6, 5.
  66. Rai, P.K.; Lalramnghinglova, H. Ethnomedicinal plant resources of Mizoram, India: Implication of traditional knowledge in health care system. Ethnobot. Leafl. 2010, 2010, 6.
  67. Irvine, F.R. Woody Plants of Ghana; Oxford University Press: England, UK, 1961.
  68. Phumthum, M.; Balslev, H. Thai ethnomedicinal plants used for diabetes treatment. OBM ICM 2018, 3, 1–25.
  69. Khumbongmayum, A.; Khan, M.; Tripathi, R. Ethnomedicinal plants in the sacred groves of Manipur. Indian J. Tradit. Knowl. (IJTK) 2005, 4, 21–32.
  70. Bhardwaj, S.; Gakhar, S.K. Ethnomedicinal plants used by the tribals of Mizoram to cure cuts & wounds. Indian J. Tradit. Knowl. 2005, 4, 75–80.
  71. Jamal, J.A.; Ghafar, Z.A.; Husain, K. Medicinal plants used for postnatal care in Malay traditional medicine in the Peninsular Malaysia. Pharmacogn. J. 2011, 3, 15–24.
  72. Nanda, Y.; Singson, N.; Rao, A.N. Ethnomedicinal plants of Thadou tribe of Manipur (India)-1. Pleione 2013, 7, 138–145.
  73. Lalmuanpuii, J.; Rosangkima, G.; Lamin, H. Ethno-medicinal practices among the Mizo ethnic group in Lunglei district, Ethno-medicinal practices among the Mizo ethnic group in Lunglei district, Mizoram. Sci. Vis. 2013, 12, 24–34.
  74. Khan, M.H.; Yadava, P.S. Antidiabetic plants used in Thoubal district of Manipur, Northeast India. Indian J. Tradit. Knowl. 2010, 9, 510–514.
  75. Salam, S.; Jamir, N.S.; Singh, P.K. Traditional uses of medicinal plants by the Tangkhul–Naga tribe in Manipur, India. Pleione 2009, 3, 157–162.
  76. Mullick, J.B.; Majumdar, T.; Reddy, K.V.R.; Mukherjee, S.; Sil, S.K. Activity of the medicinal plant Parkia Javanica against multidrug-resistant Neisseria gonorrhoeae and other clinical isolates. Asian J. Pharm. Clin. Res. 2019, 12, 83–86.
  77. Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology (5 Volume Set); CRC Press: Boca Raton, FL, USA, 2012; ISBN 142008044X.
  78. Das, A.; Das, M.C.; Sandhu, P.; Das, N.; Tribedi, P.; De, U.C.; Akhter, Y.; Bhattacharjee, S. Antibiofilm activity of Parkia javanica against Pseudomonas aeruginosa: A study with fruit extract. Rsc Adv. 2017, 7, 5497–5513.
  79. Millogo-Kone, H.; Guissou, I.P.; Nacoulma, O.; Traore, A.S. Antimicrobial effects of the stem bark extracts of Parika biglobosa (Jacq.)Benth. on Shigellae. Afr. J. Tradit. Complementary Altern. Med. 2007, 4, 392–396.
  80. Enujiugha, V.N. The antioxidant and free radical-scavenging capacity of phenolics from African locust bean seeds (Parkia biglobosa). Adv. Food Sci. 2010, 32, 88–93.
  81. Gernah, D.I.; Inyang, C.U.; Ezeora, N.L. Incubation and fermentation of African locust beans (Parkia biglobosa) in production of ‘dawadawa’. J. Food Process. Preserv. 2007, 31, 227–239.
  82. El-Mahmood, A.M.; Ameh, J.M. In vitro antibacterial activity of Parkia biglobosa (Jacq.) root bark extract against some microorganisms associated with urinary tract infections. Afr. J. Biotechnol. 2007, 6, 1272–1275.
  83. Adaramola, T.F.; Ariwaodo, J.O.; Adeniji, K.A. Distribution, phytochemistry and antioxidant properties of the genus Parkia (mimosaceae) in Nigeria. Int. J. Pharmacogn. Phytochem. Res. 2012, 4, 172–178.
  84. Builders, M. Toxicity studies of the extracts of Parkia biglobosa Stem Bark in Rats. Br. J. Pharm. Res. 2012, 2, 1–16.
  85. Chhikara, N.; Devi, H.R.; Jaglan, S.; Sharma, P.; Gupta, P.; Panghal, A. Bioactive compounds, food applications and health benefits of Parkia speciosa (stinky beans): A review. Agric. Food Secur. 2018, 7, 1–9.
  86. Ezema, B.E.; Eze, F.U.; Ezeofor, C.C. Phytochemical and antibacterial studies of eastern nigerian mistletoe (Loranthus micranthus) parasitic on Pentacletra macrophylla and Parkia biglobosa. Int. J. Pharm. Technol. Res. 2016, 9, 360–365.
  87. Mohan, V.R.; Janardhanan, K. Chemical and nutritional evaluation of raw seeds of the tribal pulses Parkia roxburghii G. Don. and Entada phaseoloides (L.) Merr. Int. J. Food Sci. Nutr. 1993, 44, 47–53.
  88. Dinda, B.; Chandra Mohanta, B.; Debnath, S.; Ghosh, B.; Arima, S.; Sato, N.; Harigaya, Y. Iridoid glucosides from leaves and stem barks of Parkia javanica. J. Asian Nat. Prod. Res. 2009, 11, 229–235.
  89. Abioye, E.O.; Akinpelu, D.A.; Aiyegoro, O.A.; Adegboye, M.F.; Oni, M.O.; Okoh, A.I. Preliminary phytochemical screening and antibacterial properties of crude stem bark extracts and fractions of Parkia biglobosa (Jacq.). Molecules 2013, 18, 8485–8499.
  90. Chanu, K.V.; Geeta Devi, L.; Kumar Srivastava, S.; Telang, A.; Khangembam Victoria Chanu, C.; Thakuria, D.; Kataria, M. Phytochemical analysis and evaluation of anticancer activity of Parkia javanica seeds. Pharma Innov. J. 2018, 7, 305–311.
  91. Tijani, A.Y.; Okhale, S.E.; Salawu, T.A.; Onigbanjo, H.O.; Obianodo, L.A.; Akingbasote, J.A.; Salawu, O.A.; Okogun, J.I.; Kunle, F.O.; Emeje, M. Antidiarrhoeal and antibacterial properties of crude aqueous stem bark extract and fractions of Parkia biglobosa (Jacq) R. Br. Ex G. Don. Afr. J. Pharm. Pharmacol. 2009, 3, 347–353.
  92. Awotedu, O.L.; Ogunbamowo, P.O.; Emmanuel, I.B.; Lawal, I.O. Phytominerals and Phytochemical Studies of Azadiracthta indica, Leea guineensis and Parkia biglobosa Leaves. Int. Ann. Sci. 2018, 6, 28–34.
  93. Fayinminnu, O.O.; Adeniyi, O.O.; Alabi, O.Y.; Omobusuyi, D.O. Potentials of Aqueous Extract of Pod Husk Parkia biglobosa (Jacq.) Benth as a Biopesticide in Okra (Abelmoschus esculentus (L.) Moench) Production. J. Agric. Ecol. Res. Int. 2017, 1–12.
  94. Sani, U.M. Phytochemical screening and antifeedant activity of the seed extracts of Parkia biglobosa against cowpea vean (Vigna unguiculata) storage pest (Callosobruchus maculatus). Int. J. Innov. Sci. Eng. Technol. 2014, 3, 15991–15995.
  95. Soetan, K.O.; Lasisi, O.T.; Agboluaje, A.K. Comparative assessment of in-vitro anthelmintic effects of the aqueous extracts of the seeds and leaves of the African locust bean (Parkia biglobosa) on bovine nematode eggs. J. Cell Anim. Biol. 2011, 5, 109–112.
  96. Iyamu, M.I.; Ekozien, M.I.; Omoigberale, M.N.O. Phytochemical screening and antibacterial activity of the stem back of African Locust bean plant (Parkia Filicoidea Welw.). Glob. J. Biol. Agric. Health Sci. 2014, 3, 36–43.
  97. Salam, J.S.; Salam, P.; Potshangbam, K.S.; Kumar, D.B. Effect of processing methods on secondary metabolites and enzyme inhibitors in different developmental stages of Parkia roxburghii G. Don pods. Am. J. Food Technol. 2014, 9, 89–96.
  98. Costa, B.A.; de Oliveira, J.M.; Sales, P.A.; Lira, S.R.D.S.; Silva, S.M.D.S.; Costa, L.M.; Muratori, M.; Costa, A.P. Systemic and reproductive toxicity induced by Parkia platycephala ethanolic extract in female Wistar rats. Braz. J. Pharmacogn. 2013, 23, 920–926.
  99. SáSantos, M.M.; da Silva, F.M.P.; da Silva, J.F.M.; Pimenta, R.S. Phytochemistry and antibacterial activity of aqueous and hydroalcoholic extracts of three medicinal plants against food pathogens. Acta Sci. Biol. Sci. 2018, 40, 1–6.
  100. Egamberdieva, D.; Ovidi, E.; Tiezzi, A.; Craker, L. Phytochemical and Pharmacological Properties of Medicinal Plants from Uzbekistan: A Review. J. Med. Act. Plants 2016, 5, 59–75.
  101. Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem. Phytochem. 2013, 1, 168–182.
  102. Tariq, A.L.; Reyaz, A.L. Significances and importance of phytochemical present in Terminalia chebula. Int. J. Drug Dev. Res. 2013, 5, 256–262.
  103. Wadood, A.; Ghufran, M.; Jamal, S.B.; Naeem, M.; Khan, A.; Ghaffar, R. Phytochemical analysis of medicinal plants occurring in local area of Mardan. Biochem. Anal. Biochem. 2013, 2.
  104. Ahmad, N.I.; Rahman, S.A.; Leong, Y.H.; Azizul, N.H. A review on the phytochemicals of Parkia speciosa, stinky beans as potential phytomedicine. J. Food Sci. Nutr. Res. 2019, 2, 151–173.
  105. Sikolia, S.F.; Omondi, S. Phytochemical Analysis of Some Selected Plants and Families in the University Botanic Garden of Maseno, Kenya. IOSR J. Pharm. Biol. Sci. 2017, 12, 31–38.
  106. Tala, V.R.S.; Da Silva, V.C.; Rodrigues, C.M.; Nkengfack, A.E.; Dos Santos, L.C.; Vilegas, W. Characterization of proanthocyanidins from Parkia biglobosa (Jacq.) G. Don. (Fabaceae) by flow injection analysis—electrospray ionization ion trap tandem mass spectrometry and liquid chromatography/electrospray ionization mass spectrometry. Molecules 2013, 18, 2803–2820.
  107. Ko, H.J.; Ang, L.H.; Ng, L.T. Antioxidant activities and polyphenolic constituents of bitter bean Parkia speciosa. Int. J. Food Prop. 2014, 17, 1977–1986.
  108. Loukrakpam, B.; Rajendran, A.; Chyne, D.A.L.; Longvah, T. 12th IFDC 2017 Special Issue—Nutrient and phytonutrient profiles of some indigenous vegetables of Manipur, Northeast India. J. Food Compos. Anal. 2019, 79, 12–22.
  109. Mohammad, M.; Garba, M.A.; Haruna, A.; Jimoh, A.A. Characterization of naringenin from the fruit pulp extract of Parkia biglobosa (FABACEAE). Fuw Trends Sci. Technol. J. 2018, 4, 918–920.
  110. Dinda, B.; Mohanta, B.C.; Ghosh, P.; Sato, N.; Harigaya, Y. ChemInform Abstract: Chemical Constituents of Parkia javanica, Alocasia indica and Premna latifolia. ChemInform 2011, 42.
  111. Tringali, C.; Spatafora, C.; Longo, O.D. Bioactive constituents of the bark of Parkia biglobosa. Fitoterapia 2000, 71, 118–125.
  112. Kamisah, Y.; Zuhair, J.S.F.; Juliana, A.H.; Jaarin, K. Parkia speciosa empty pod prevents hypertension and cardiac damage in rats given N(G)-nitro-L-arginine methyl ester. Biomed. Pharmacother. 2017, 96, 291–298.
  113. Adewoye, R.O.; Ajayi, O.O. Flavonols, flavones and tannins of Parkia clapperoniana. J. Am. Leather Chem. Assoc. (USA) 1988, 83, 153–156.
  114. Adewoye, R.O.; Ajayi, O.O. Anthocyanidins of Parkia clappertoniana. J. Soc. Leather Technol. Chem. 1989, 73, 120–121.
  115. Lemmich, E.; Adewunmi, C.O.; Furu, P.; Kristensen, A.; Larsen, L.; Olsen, C.E. 5-Deoxyflavones from Parkia clappertoniana. Phytochemistry 1996, 42, 1011–1013.
  116. Ouoba, L.I.I.; Diawara, B.; Annan, N.T.; Poll, L.; Jakobsen, M. Volatile compounds of Soumbala, a fermented African locust bean (Parkia biglobosa) food condiment. J. Appl. Microbiol. 2005, 99, 1413–1421.
  117. Mohd Azizi, C.Y.; Salman, Z.; Nik Norulain, N.; Mohd Omar, A. Extraction and identification of compounds from Parkia Speciosa seeds by supercritical carbon dioxide. J. Chem. Nat. Resour. Eng. 2008, 2, 153–163.
  118. Bitchi, M.B.; Magid, A.A.; Yao-Kouassi, P.A.; Kabran, F.A.; Harakat, D.; Martinez, A.; Morjani, H.; Tonzibo, F.Z.; Voutquenne-Nazabadioko, L. Triterpene saponins from the roots of Parkia bicolor A. Chev. Fitoterapia 2019, 137, 104264.
  119. Rahman, N.N.N.A.; Zhari, S.; Sarker, M.Z.I.; Ferdosh, S.; Yunus, M.A.C.; Kadir, M.O.A. Profile of Parkia speciosa hassk metabolites extracted with SFE using FTIR-PCA method. J. Chin. Chem. Soc. 2012, 59, 507–514.
  120. Jamaluddin, F.; Mohamed, S.; Lajis, M.N. Hypoglycaemic effect of Parkia speciosa seeds due to the synergistic action of β-sitosterol and stigmasterol. Food Chem. 1994, 49, 339–345.
  121. Akintayo, E.T. Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour. Technol. 2004, 92, 307–310.
  122. Olatunya, A.M.; Omojola, A.; Akinpelu, K.; Akintayo, E.T. Vitamin E, Phospholipid, and Phytosterol Contents of Parkia biglobosa and Citrullus colocynthis Seeds and Their Potential Applications to Human Health. Prev. Nutr. Food Sci. 2019, 24, 338–343.
  123. Jamaluddin, F.; Mohameda, S.; Lajis, M.N. Hypoglycaemic effect of Stigmast-4-en-3-one, from Parkia speciosa empty pods. Food Chem. 1995, 54, 9–13.
  124. Salman, Z.; Mohd Azizi, C.; Nik Norulaini, N.; Mohd Omar, A. Gas chromatography/time-of-flight mass spectrometry for identification of compounds from Parkia speciosa seeds extracted by supercritical carbon dioxide. In Proceedings of the First International Conference on Natural Resources Engineering & Technology, Putrajaya, Malaysia, 24–25 July 2006; pp. 112–120.
  125. Frérot, E.; Velluz, A.; Bagnoud, A.; Delort, E. Analysis of the volatile constituents of cooked petai beans (Parkia speciosa) using high-resolution GC/ToF–MS. Flavour Fragr. J. 2008, 23, 434–440.
  126. Gmelin, R.; Susilo, R.; Fenwick, G.R. Cyclic polysulphides from Parkia speciosa. Phytochemistry 1981, 20, 2521–2523.
  127. Miyazawa, M.; Osman, F. Headspace constituents of Parkia speciosa seeds. Nat. Prod. Lett. 2001, 15, 171–176.
  128. Tocmo, R.; Liang, D.; Wang, C.; Poh, J.; Huang, D. Organosulfide profile and hydrogen sulfide-releasing capacity of stinky bean (Parkia speciosa) oil: Effects of pH and extraction methods. Food Chem. 2016, 190, 1123–1129.
  129. Adeyeye, E.I. The effect of fermentation on the dietary quality of lipids from African locust bean (Parkia biglobosa) seeds. Elixir Food Sci. 2013, 58, 14912–14922.
  130. Olatunya, A.M.; Akintayo, C.O.; Akintayo, E.T. Determination of qualitative and quantitative fatty acid composition of Parkia biglobbossa seed oil using two different analytical techniques. Int. J. Adv. Res. 2015, 3, 463–473.
  131. Bukar, A.; Uba, A.; Oyeyi, T.I. Phytochemical analysis and antimicrobial activity of Parkia biglobosa (Jacq.) Benth. extracts againt some food--borne microrganisms. Adv. Environ. Biol. 2010, 74–80.
  132. Musa, N.; Wei, L.S.; Seng, C.T.; Wee, W.; Leong, L.K. Potential of Edible Plants as Remedies of Systemic Bacterial Disease Infection in Cultured Fish. Glob. J. Pharmacol. 2008, 2, 31–36.
  133. Hasim, H.; Faridah, D.N. Antibacterial activity of Parkia speciosa Hassk. peel to Escherichia coli and Staphylococcus aureus bacteria. J. Chem. Pharm. Res. 2015, 7, 239–243.
  134. Fatimah, I. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res. 2016, 7, 961–969.
  135. Kawamura, F.; Ramle, S.F.M.; Sulaiman, O.; Hashim, R.; Ohara, S. Antioxidant and antifungal activities of extracts from 15 selected hardwood species of Malaysian timber. Eur. J. Wood Wood Prod. 2011, 69, 207–212.
  136. Uyub, A.M.; Nwachukwu, I.N.; Azlan, A.A.; Fariza, S.S. In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on some pathogenic bacteria. Ethnobot. Res. Appl. 2010, 8, 95–106.
  137. Sakunpak, A.; Panichayupakaranant, P. Antibacterial activity of Thai edible plants against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum antibacterial polyisoprenylated benzophenone, chamuangone. Food Chem. 2012, 130, 826–831.
  138. Sil, S.K.; Saha, S.; Karmakar, P. Reactive oxygen species as possible mediator of antibacterial activity of Parkia javanica, against bacterial species predominantly found in chronic wound. J. Drug Deliv. Ther. 2018, 8, 43–47.
  139. Rupanjali, S.; Basu, J.M.; Syamal, R.; Biswanath, D.; Sil, S.K. In vitro activity of Parkia javanica extract against Leishmania donovani parasite. J. Appl. Biosci. 2010, 36, 85–89.
  140. Paul, B.; Bhuyan, B.; Purkayastha, D.D.; Dhar, S.S. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J. Photochem. Photobiol. B Biol. 2016, 154, 1–7.
  141. Devi, T.P.; Shakuntala, I.; Devi, G.; Nonglait, K.K.L.; Singha, L.B.; Pattanayak, A.; Rahman, H. Antibacterial, nematicidal and nutritional properties of different parts of tree bean, Parkia roxburghii G. Don. Asian J. Microbiol. Biotechnol. Environ. Sci 2007, 9, 621–626.
  142. Patel, J.R.; Gohil, T.G. Antibacterial efficacy of methanolic leaf extracts of some trees against some common pathogenic bacteria. J. Appl. Sci. Comput. 2018, 5, 404–408.
  143. Favacho, A.R.M.; Cintra, E.A.; Coelho, L.C.B.B.; Linhares, M.I.S. In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biologicals 2007, 35, 189–194.
  144. Jamaluddin, F.; Mohameda, S. Hypoglycemic effect of extracts of petai papan (Parkia speciosa, Hassk). Agric. Sci. 1993, 16, 161.
  145. Fitria, F.; Annisa, A.; Nikita, S.; Ranna, C. Alpha glukosidase inhibitory test and total phenolic content of ethanol extract of Parkia speciosa plant. Sci. Technol. Indones. 2019, 4, 1.
  146. Ramu, R.; Shirahatti, P.S.; Nayakavadi, S.; Vadivelan, R.; Zameer, F.; Dhananjaya, B.L.; Nagendra Prasad, M.N. The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food Funct. 2016, 7, 3999–4011.
  147. Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food Nutr. Res. 2017, 61.
  148. Ogunyinka, B.I.; Oyinloye, B.E.; Osunsanmi, F.O.; Opoku, A.R.; Kappo, A.P. Modulatory influence of Parkia biglobosa protein isolate on testosterone and biomarkers of oxidative stress in brain and testes of streptozotocin-induced diabetic male rats Bolajoko. Int. J. Physiol. Pathophysiol. Pharm. 2016, 8, 78–86.
  149. Patra, K.; Jana, S.; Sarkar, A.; Karmakar, S.; Jana, J.; Gupta, M.; Mukherjee, G.; De, U.C.; Mandal, D.P.; Bhattacharjee, S. Parkia javanica extract induces apoptosis in S-180 cells via the intrinsic pathway of apoptosis. Nutr. Cancer 2016, 68, 689–707.
  150. Kaur, N.; Singh, J.; Kamboj, S.; Agrewala, J.; Kaur, M. Two Novel Lectins from Parkia biglandulosa and Parkia roxburghii: Isolation, Physicochemical Characterization, Mitogenicity and Anti- Proliferative Activity. Protein Pept. Lett. 2005, 12, 589–595.
  151. Aisha, A.F.A.; Abu-Salah, K.M.; Darwis, Y.; Majid, A.M.S.A. Screening of antiangiogenic activity of some tropical plants by rat aorta ring assay. Int. J. Pharmacol. 2009, 5, 370–376.
  152. Aisha, A.F.A.; Abu-Salah, K.M.; Alrokayan, S.A.; Ismail, Z.; Abdul Majid, A.M.S. Evaluation of antiangiogenic and antoxidant properties of Parkia speciosa Hassk extracts. Pak. J. Pharm. Sci. 2012, 25, 7–14.
  153. Fadeyi, S.A.; Fadeyi, O.O.; Adejumo, A.A.; Okoro, C.; Myles, E.L. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complementary Altern. Med. 2013, 13, 79.
  154. Khalid, N.M.; Babji, A.S. Antioxidative and antihypertensive activities of selected Malaysian ulam (salad), vegetables and herbs. J. Food Res. 2018, 7, 27–37.
  155. Siow, H.L.; Gan, C.Y. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Food Chem. 2013, 141, 3435–3442.
  156. Zaini, N.; Mustaffa, F. Review: Parkia speciosa as Valuable, Miracle of Nature. Asian J. Med. Health 2017, 2, 1–9.
  157. Kassi, Y.; Aka, K.J.; Abo, K.J.C.; Mea, A.; Bi, S.A.N.; Ehile, E.E. Effet antihypertensif d’un extrait aqueux d’écorce de tronc de Parkia biglobosa (mimosaceae) sur la pression artérielle de lapin. Sci. Nat. 2008, 5, 133–143.
  158. Ouédraogoa, S.; Somé, N.; Ouattara, S.; Kini, F.B.; Traore, A.; Bucher, B.; Guissou, I.P. Acute toxicity and vascular properties of seed of Parkia biglobosa (JACQ) R. Br Gift (Mimosaceae) on rat aorta. Afr. J. Tradit. Complementary Altern. Med. 2012, 9, 260–265.
  159. Ognatan, K.; Adi, K.; Lamboni, C.; Damorou, J.M.; Aklikokou, K.A.; Gbeassor, M.; Guilland, J.C. Effect of dietary intake of fermented seeds of Parkia biglobosa (Jacq) Benth (African locust bean) on hypertension in bogou and goumou-kope areas of togo. Trop. J. Pharm. Res. 2011, 10, 603–609.
  160. Adebayo, O.L.; Marzuk, S.; Mumuni, S.I. An in vivo assessment of Anti-diarrheal activity of solvent extracts of leaf and stem bark of Ghanian Parkia biglobosa against castor oil induced diarrhea in albino rats. Int. J. Bioassays 2014, 310, 3358–3362.
  161. Owolabi, O.J.; Ukoima, G.S.; Inninh, S.O.; Otokiti, I.O. The anti-diarrhoeal activity of the aqueous stem bark extract of Parkia filicoidea (Fabaceae). J. Med. Biomed. Res. 2016, 15, 12–20.
  162. Al Batran, R.; Al-Bayaty, F.; Al-Obaidi, M.M.J.; Abdualkader, A.M.; Hadi, H.A.; Ali, H.M.; Abdulla, M. A In vivo antioxidant and antiulcer activity of Parkia speciosa ethanolic leaf extract against ethanol-induced gastric ulcer in rats. PLoS ONE 2013, 8, e64751.
  163. Maria, M.S.; Devarakonda, S.; Kumar, A.T.V.; Balakrishnan, N. Anti-ulcer activity of ethanol extract of Parkia speciosa against indomethacin induced peptic ulcer in albino rats. Int. J. Pharm. Sci. Res. 2015, 6, 895–902.
  164. Fernandes, H.B.; Silva, F.V.; B Passos, F.F.; S Bezerra, R.D.; Chaves, M.H.; Oliveira, F.A.; Meneses Oliveira, R.C. Gastroprotective effect of the ethanolic extract of Parkia platycephala benth. Leaves against acute gastric lesion models in rodents. Biol. Res. 2010, 43, 451–457.
  165. Ijarotimi, O.S.; Keshinro, O.O. Protein quality, hematological properties and nutritional status of albino rats fed complementary foods with fermented popcorn, African locust bean, and bambara groundnut flour blends. Nutr. Res. Pract. 2012, 6, 381–388.
  166. Nursucihta, S.; Thai’in, H.A.; Putri, D.M.; Utami, D.N.; Ghani, A.P. Antianemia activity of parkia speciosa hassk seed ethanolic extract. Maj. Obat Tradis. 2014, 19, 49–54.
  167. Shete, S.V.; Mundada, S.J.; Dhande, S. Comparative effect of crude extract of Parkia biglandulosa and Its isolate on regenerative angiogenesis In adult Zebrafish. Indian Drug 2017, 54, 51–57.
  168. Ajibola, M.; Olugbemi, O.; Joseph, D.; Denen, A. Hepatoprotective effect of Parkia biglobosa stem bark methanolic extract on paracetamol induced liver damage in wistar rats. Am. J. Biomed. Life Sci 2013, 1, 75–78.
  169. Coriolano, M.C.; de Melo, C.M.L.; de Oliveira Silva, F.; Schirato, G.V.; Porto, C.S.; dos Santos, P.J.P.; dos Santos Correia, M.T.; Porto, A.L.F.; dos Anjos Carneiro-Leão, A.M.; Coelho, L.C.B.B. Parkia pendula seed lectin: Potential use to treat cutaneous wounds in healthy and immunocompromised mice. Appl. Biochem. Biotechnol. 2014, 172, 2682–2693.
  170. Gui, J.S.; Jalil, J.; Jubri, Z.; Kamisah, Y. Parkia speciosa empty pod extract exerts anti-inflammatory properties by modulating NFκB and MAPK pathways in cardiomyocytes exposed to tumor necrosis factor-α. Cytotechnology 2019, 71, 79–89.
  171. Mustafa, N.H.; Ugusman, A.; Jalil, J.; Kamisah, Y. Anti-inflammatory property of Parkia speciosa empty pod extract in human umbilical vein endothelial cells. J. Appl. Pharm. Sci. 2018, 8, 152–158.
  172. Nwaehujor, C.O.; Ezeigbo, I.I.; Udeh, N.E.; Ezeja, M.I.; Asuzu, I.U. Anti-inflammatory anti-oxidant Activities of the methanolic extracts of the stalk of Parkia biglobosa. Hygein J. Med. 2010, 3, 34–40.
  173. Silva, H.C.; Bari, A.U.; Rocha, B.A.M.; Nascimento, K.S.; Ponte, E.L.; Pires, A.F.; Delatorre, P.; Teixeira, E.H.; Debray, H.; Assreuy, A.M.S. Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties. J. Mol. Recognit. 2013, 26, 470–478.
  174. Ukwuani, A.; Ahmad, H. In vitro anti-inflammatory activity of Parkia biglobosa fruit bark extract. Int. J. Life Sci. Sci. Res. 2015, 1, 8–11.
  175. Bari, A.U.; Santiago, M.Q.; Osterne, V.J.S.; Pinto-Junior, V.R.; Pereira, L.P.; Silva-Filho, J.C.; Debray, H.; Rocha, B.A.M.; Delatorre, P.; Teixeira, C.S.; et al. Lectins from Parkia biglobosa and Parkia platycephala: A comparative study of structure and biological effects. Int. J. Biol. Macromol. 2016, 92, 194–201.
  176. Ruthiran, P.; Selvaraj, C.I. Phytochemical screening and in vitro antioxidant activity of Parkia timoriana (DC.) Merr. Res. J. Biotechnol. 2017, 12, 12.
  177. Chanu, K.V.; Ali, M.A.; Kataria, M. Antioxidant activities of two medicinal vegetables: Parkia javanica and Phlogacanthus thyrsiflorus. Int. J. Pharm. Pharm. Sci. 2012, 4, 102–106.
  178. Seal, T. Antioxidant activity of some wild edible plants of Meghalaya state of India: A comparison using two solvent extraction systems. Int. J. Nutr. Metab. 2012, 4, 51–56.
  179. Badu, M.; Mensah, J.K.; Boadi, N.O. Antioxidant activity of methanol and ethanol/water extracts of Tetrapleura tetraptera and Parkia biglobosa. Int. J. Pharma Bio Sci. 2012, 3, 312–321.
  180. Balaji, K.; Nedumaran, S.A.; Devi, T.; Sikarwar, M.S.; Fuloria, S. Phytochemical analysis and in vitro antioxidant activity of Parkia speciosa. Int. J. Green Pharm. 2015, 9, S50–S54.
  181. Ghasemzadeh, A.; Jaafar, H.Z.E.; Bukhori, M.F.M.; Rahmat, M.H.; Rahmat, A. Assessment and comparison of phytochemical constituents and biological activities of bitter bean (Parkia speciosa Hassk.) collected from different locations in Malaysia. Chem. Cent. J. 2018, 12, 1–9.
  182. Tunsaringkarn, T.; Soogarun, S.; Rungsiyothin, A.; Palasuwan, A. Inhibitory activity of Heinz body induction in vitro antioxidant model and tannin concentration of Thai mimosaceous plant extracts. J. Med. Plants Res. 2012, 6, 4096–4101.
  183. Ramli, S.; Bunrathep, S.; Tansaringkarn, T.; Ruangrungsi, N. Screening for free radical scavenging activity from ethanolic extract of Mimosaceous plants Endemic to Thailand. J. Health Res. 2008, 22, 55–59.
  184. Oboh, G.; Alabi, K.B.; Akindahunsi, A.A. Fermentation changes the nutritive value, polyphenol distribution, and antioxidant properties of Parkia biglobosa seeds (African locust beans). Food Biotechnol. 2008, 22, 363–376.
  185. Komolafe, K.; Olaleye, T.M.; Omotuyi, O.I.; Boligon, A.A.; Athayde, M.L.; Akindahunsi, A.A.; da Rocha, J.B.T. In vitro antioxidant activity and effect of Parkia biglobosa bark extract on mitochondrial redox status. Jams J. Acupunct. Meridian Stud. 2014, 7, 202–210.
  186. Millogo-Kone, H.; Guissou, I.; Nacoulma, O.; Traore, A. Comparative study of leaf and stem bark extracts of Parkia biglobosa against enterobacteria. Afr. J. Tradit. Complementary Altern. Med. 2008, 5, 238–243.
  187. Yahaya, U.; Abubakar, S.; Salisu, A. Antifungal activity of Parkia biglobosa extract on pathogenic strain of Candida albicans. J. Appl. Sci. 2019, 19, 235–240.
  188. Joshua, E.; Joshua, E.; Ifeanyichukwu, I.; Chika, E.; Okoro, N.; Carissa, D.; Emmanuel, N.; Chukwuka, A. In vitro evaluation of antibacterial activity of Parkia biglobosa, Hymenocardia acida and Zanthoxylum zanthoxyloides extracts on pathogenic Staphylococcus aureus Isolates. Int. J. Life Sci. 2016, 5, 72–77.
  189. Nounagnon, M.; Dah-Nouvlessounon, D.; N’tcha, C.; Nanoukon, C.; Assogba, F.; Lalèyè, F.O.A.; Baba-Moussa, L. Phytochemical composition, antimicrobial and cytotoxicity activities of Parkia biglobosa (Jacq) benth extracts from Benin. J. Pharmacogn. Phytochem. 2017, 6, 35–42.
  190. Millogo-Kone, H.; Lompo, M.; Kini, F.; Asimi, S.; Guissou, I.P.; Nacoulma, O. Evaluation of flavonoids and total phenolic contents of stem bark and leaves of Parkia biglobosa (Jacq.) Benth.(Mimosaceae)-free radical scavenging and antimicrobial activities. Res. J. Med Sci. 2009, 3, 70–74.
  191. Obajuluwa, A.F.; Onaolapo, J.A.; Oyi, A.R.; Olayinka, B.O. Susceptibility profile of methicillin-resistant Staphylococcus aureus (MRSA) isolates to antibiotics and methanolic extracts of Parkia biglobosa (Jacq.) Benth. Br. J. Pharm. Res. 2013, 3, 587–596.
  192. Dosumu, O.O.; Oluwaniyi, O.O.; Awolola, G.V.; Oyedeji, O.O. Nutritional composition and antimicrobial properties of three Nigerian condiments. Niger. Food J. 2012, 30, 43–52.
  193. Osemwegie, O.O.; Dahunsi, S.O. In-vitro effects of aqueous and ethanolic extracts of Parkia biglobossa (Jacq.) Benth on selected microorganisms. Niger. J. Biotechnol. 2015, 11–20.
  194. Igwo-Ezikpe, M.N.; Ogbunugafor, H.A.; Gureje, A.P.; Ezeonwumelu, I.J. Phytochemical, antioxidant and antimicrobial properties of Parkia biglobosa (African Locust Bean) pods. Bioscientist 2013, 1, 182–191.
  195. Farias, D.F.; Souza, T.M.; Viana, M.P.; Soares, B.M.; Cunha, A.P.; Vasconcelos, I.M.; Ricardo, N.M.P.S.; Ferreira, P.M.P.; Melo, V.M.M.; Carvalho, A.F.U. Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from Brazilian semiarid region. Biomed Res. Int. 2013, 2013, 510736.
  196. Silva, R.R.S.; Silva, C.R.; Santos, V.F.; Barbosa, C.R.S.; Muniz, D.F.; Santos, A.L.E.; Santos, M.H.C.; Rocha, B.A.M.; Batista, K.L.R.; Costa-Júnior, L.M.; et al. Parkia platycephala lectin enhances the antibiotic activity against multi-resistant bacterial strains and inhibits the development of Haemonchus contortus. Microb. Pathog. 2019, 135, 103629.
  197. Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S.A.A.; Tripathy, M.; Paliwal, N. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys. 2019, 15, 102565.
  198. Thongbam, P.D.; Shakuntala, I.; Fiyaz, A.R.; Moirangthem, S.S.; Pajat, J.J.; Ngachan, S.V. Tree bean (Parkia roxburghii G. Don): A complete food and ethno-medicine for North East India. Res. Bull. 2012, 12–14.
  199. Zuhud, E.A.M.; Rahayu, W.P.; Wijaya, C.H.; Sari, P.P. Antimicrobial activity of kedawung extract (Parkia roxburghii G. Don) on food borne pathogens. J. Teknol. Dan Ind. Pangan 2001, 12, 1–5.
  200. Shrisha, D.L.; Raveesha, K.A. Nagabhushan Bioprospecting of selected medicinal plants for antibacterial activity against some pathogenic bacteria. J. Med. Plants Res. 2011, 5, 4087–4093.
  201. Behuria, H.G.; Sahu, S.K. An Anti-microbial terpenoid fraction from Gymnema sylvestre induces flip-flop of fluorescent-phospholipid analogs in model membrane. Appl. Biochem. Biotechnol. 2020, 192, 1331–1345.
  202. Tunsaringkarn, T.; Rungsiyothin, A.; Ruangrungs, N. α-glucosidase inhibitory activity of Thai mimosaceous plant extracts. J. Health Res. 2008, 22, 29–33.
  203. Saleh, M.S.M.; Siddiqui, M.J.; Mat So’ad, S.Z.; Roheem, F.O.; Saidi-Besbes, S.; Khatib, A. Correlation of FT-IR fingerprint and α-glucosidase inhibitory activity of salak (Salacca zalacca) fruit extracts utilizing orthogonal partial least square. Molecules 2018, 23, 1434.
  204. Ward, M.G.; Li, G.; Barbosa-Lorenzi, V.C.; Hao, M. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion. Sci. Rep. 2017, 7, 1–13.
  205. Aiyer, P.V. Amylases and their applications. Afr. J. Biotechnol. 2005, 4, 1525–1529.
  206. Odetola, A.A.; Akinloye, O.; Egunjobi, C.; Adekunle, W.A.; Ayoola, A.O. Possible antidiabetic and antihyperlipidaemic effect of fermented Parkia biglobosa (Jacq) ex- tract in alloxan induced diabetic rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 808–812.
  207. Sule, O.; Godwin, J.; Abdu, A. Preliminary study of hypoglycemic effect of locust bean (Parkia biglobosa) on wistar albino rat. J. Sci. Res. Rep. 2015, 4, 467–472.
  208. Ibrahim, M.A.; Habila, J.D.; Koorbanally, N.A.; Islam, M.S. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J. Ethnopharmacol. 2016, 183, 103–111.
  209. Chanvitan, A.; Ubolcholket, S.; Chongsuvivatwong, V.; Geater, A. Risk factors for squamous cell carcinoma in southern Thailand. Esophageal Canver Stud. South. Thail. 1990, 81–100.
  210. Tangkanakul, P.; Trakoontivakorn, G.; Saengprakai, J.; Auttaviboonkul, P.; Niyomwit, B.; Lowvitoon, N.; Nakahara, K. Antioxidant capacity and antimutagenicity of thermal processed Thai foods. Jpn. Agric. Res. Q. JARQ 2011, 45, 211–218.
  211. Murakami, A.; Ohigashi, H.; Koshimizu, K. Possible anti-tumour promoting properties of traditional Thai food items and some of their active constituents. Asia Pac. J. Clin. Nutr. 1994, 3, 185–191.
  212. Singh, R.S.; Bhari, R.; Kaur, H.P. Mushroom lectins: Current status and future perspectives. Crit. Rev. Biotechnol. 2010, 30, 99–126.
  213. Suvachittanont, W.; Jaranchavanapet, P. Mitogenic effect of Parkia speciosa seed lectin on human lymphocytes. Planta Med. 2000, 66, 699–704.
  214. Kamisah, Y.; Othman, F.; Qodriyah, H.M.S.; Jaarin, K. Parkia speciosa Hassk.: A potential phytomedicine. Evid. Based Complementary Altern. Med. 2013, 2013, 709028.
  215. Auyeung, K.K.; Han, Q.-B.; Ko, J.K. Astragalus membranaceus: A review of its protection against inflammation and gastrointestinal cancers. Am. J. Chin. Med. 2016, 44, 1–22.
  216. Kodjo, K.M.; Contesse, V.; Do Rego, J.L.; Aklikokou, K.; Titrikou, S.; Gbeassor, M.; Vaudry, H. In vitro effects of crude extracts of Parkia biglobosa (Mimosaceae), Stereospermum kunthianum (Bignoniaceae) and Biophytum petersianum (Oxalidaceae) on corticosteroid secretion in rat. J. Steroid Biochem. Mol. Biol. 2006, 100, 202–208.
  217. Yi, Q.Y.; Li, H.B.; Qi, J.; Yu, X.J.; Huo, C.J.; Li, X.; Bai, J.; Gao, H.L.; Kou, B.; Liu, K.L.; et al. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines. Toxicol. Lett. 2016, 262, 105–113.
  218. Galleano, M.; Pechanova, O.; G Fraga, C. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol. 2010, 11, 837–848.
  219. Takagaki, A.; Nanjo, F. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2015, 63, 8262–8266.
  220. Luo, D.; Xu, J.; Chen, X.; Zhu, X.; Liu, S.; Li, J.; Xu, X.; Ma, X.; Zhao, J.; Ji, X. (−)-Epigallocatechin-3-gallate (EGCG) attenuates salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Sci. Rep. 2020, 10, 1–11.
  221. Ayo-Lawal, R.A.; Osoniyi, O.; Famurewa, A.J.; Lawal, O.A. Evaluation of antioxidant and hypolipidaemic effects of fermented Parkia biglobosa (Jacq) seeds in tyloxapol-induced hyperlipidaemic rats. Afr. J. Food Sci. 2014, 8, 225–232.
  222. Rendu, F.; Saleun, S.; Auger, J. Parkia biglobosa seeds possess anti platelet activity. Thromb. Res. 1993, 71, 505–508.
  223. Appeldoorn, M.M.; Venema, D.P.; Peters, T.H.F.; Koenen, M.E.; Arts, I.C.W.; Vincken, J.P.; Gruppen, H.; Keuer, J.; Hollman, P.C.H. Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro. J. Agric. Food Chem. 2009, 57, 7693–7699.
  224. Sahoo, H.B.; Sagar, R.; Kumar, A.; Bhaiji, A.; Bhattamishra, S.K. Antidiarrhoeal investigation of Apium leptophyllum (Pers.) by modulation of Na+K+ATPase, nitrous oxide and intestinal transit in rats. Biomed. J. 2016, 39, 376–381.
  225. Khan, T.; Ali, S.; Qayyum, R.; Hussain, I.; Wahid, F.; Shah, A.J. Intestinal and vascular smooth muscle relaxant effect of Viscum album explains its medicinal use in hyperactive gut disorders and hypertension. BMC Complementary Altern. Med. 2016, 16, 1–8.
  226. Imtiaz, S.M.; Aleem, A.; Saqib, F.; Ormenisan, A.N.; Neculau, A.E.; Anastasiu, C.V. The potential involvement of an ATP-dependent potassium channel-opening mechanism in the smooth muscle relaxant properties of Tamarix dioica roxb. Biomolecules 2019, 9, 722.
  227. Hamaishi, K.; Kojima, R.; Ito, M. Anti-ulcer effect of tea catechin in rats. Biol. Pharm. Bull. 2006, 29, 2206–2213.
  228. Ito, Y.; Ichikawa, T.; Iwai, T.; Saegusa, Y.; Ikezawa, T.; Goso, Y.; Ishihara, K. Effects of tea catechins on the gastrointestinal mucosa in rats. J. Agric. Food Chem. 2008, 56, 12122–12126.
  229. Suzuki, Y.; Ishihara, M.; Segami, T.; Ito, M. Anti-ulcer effects of antioxidants, quercetin, α-tocopherol, nifedipine and tetracycline in rats. Jpn. J. Pharmacol. 1998, 78, 435–441.
  230. De Barros, M.P.; Lemos, M.; Maistro, E.L.; Leite, M.F.; Sousa, J.P.B.; Bastos, J.K.; de Andrade, S.F. Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. J. Ethnopharmacol. 2008, 120, 372–377.
  231. Bajpai, V.K.; Alam, B.; Ju, M.; Kwon, K.; Suk, Y. Antioxidant mechanism of polyphenol-rich Nymphaea nouchali leaf extract protecting DNA damage and attenuating oxidative stress-induced cell death via Nrf2-mediated heme-oxygenase-1 induction coupled with ERK/p38 signaling pathway. Biomed. Pharmacother. 2018, 103, 1397–1407.
  232. Angami, T.; Bhagawati, R.; Touthang, L.; Makdoh, B.; Nirmal; Lungmuana; Bharati, K.A.; Silambarasan, R.; Ayyanar, M. Traditional uses, phytochemistry and biological activities of Parkia timoriana (DC.) Merr., an underutilized multipurpose tree bean: A review. Genet. Resour. Crop Evol. 2018, 65, 679–692.
  233. Hopkins, H.C. Floral biology and pollination ecology of the neotropical species of Parkia. J. Ecol. 1984, 72, 1–23.
  234. Abalaka, S.E.; Fatihu, M.Y.; Ibrahim, N.D.G.; Kazeem, H.M. Histopathologic changes in the gills and skin of adult Clarias gariepinus exposed to ethanolic extract of Parkia biglobosa pods. Basic Appl. Pathol. 2010, 3, 109–114.
  235. Oshimagye, M.I.; Ayuba, V.O.; Annune, P.A. Toxicity of aqueous extracts of Parkia biglobosa pods on Clarias gariepinus (Burchell, 1822) Juveniles. Niger. J. Fish. Aquac. 2014, 2, 24–29.
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to : , , , , ,
View Times: 414
Revisions: 2 times (View History)
Update Date: 10 Feb 2023
Video Production Service