Phytochemistry, Medicinal Uses and Pharmacological Activities of *Parkia*

Subjects: Pharmacology & Pharmacy

Contributor: Yusof Kamisah , Mohammed S. M. Saleh , Juriyati Jalil , Satirah Zainalabidin , Ahmad Yusof Asmadi , nor hidayah mustafa

Parkia is a genus of flowering plants belonging to the family Fabaceae (subfamily, Mimosoideae) with pan-tropical distribution. The word *Parkia* was named after the Scottish explorer Mungo Park, who drowned in the Niger River, Nigeria in January 1805. The genus *Parkia* (Fabaceae, Subfamily, Mimosoideae) comprises about 34 species of mostly evergreen trees widely distributed across neotropics, Asia, and Africa.

Parkia Mimosoideae traditional medicine secondary metabolite

1. Introduction

Parkia is a genus of flowering plants belonging to the family Fabaceae (subfamily, Mimosoideae) with pan-tropical distribution ^[1]. The word *Parkia* was named after the Scottish explorer Mungo Park, who drowned in the Niger River, Nigeria in January 1805 ^[2]. Thirty-one species from this genus were reported in 1995 ^[3]. Another four more species were discovered in 2009 ^[4]. Out of these species, 10 species found in Asia, four in Africa, and 20 in neotropics. Meanwhile, according to a plant list (2018), 80 scientific names are recorded from the genus *Parkia* containing 41 accepted names and 39 synonym species (The Plant List, 2018). These plants bear fruits called pods. Each pod contains up to 25–30 seeds. Many species from *Parkia* have been reported to be rich in carbohydrate ^{[5][6][7]}, protein ^{[8][9][10]} and minerals ^{[11][12][13][14]}.

2. Traditional Medicinal Uses

Parkia species are being used across all tropical countries to cure different ailments. Virtually, all parts of *Parkia* plants are utilized traditionally for different medicinal purposes. The materials of different parts of *Parkia* plants are processed as paste, decoction, and juice for the treatment of various ailments (**Table 1**). Almost all reported *Parkia* species are used in different forms to cure diarrhea and dysentery ^[15]. Different parts of *P. biglobosa*, *P. clappertoniana*, *P. roxburghii*, and *P. speciosa* are reported to be traditionally used for the treatment of diabetes ^[16]. Furthermore, skin-related diseases, such as eczema, skin ulcers, measles, leprosy, wound, dermatitis, chickenpox, scabies, and ringworm are treated using leaves, pods, and roots of *P. speciosa* and *P. timoriana* ^{[19][20]}. The stem barks of *P. bicolor*, *P. clappertoniana*, *P. biglobosa*, *P. roxburghii* as well as roots of *P. speciosa* are applied in the form of paste and decoction to treat different skin problems ^{[22][23][24][25]}. Decoction and paste of stem bark, pod, or root of *P. biglobosa* and *P. speciosa* are used to treat hypertension ^{[22][26][27]}. Moreover, stem barks of

P. bicolor, P. biglobosa and leaves of *P. speciosa* are used for severe cough and bronchitis ^{[28][29][30]}. These aforementioned uses suggested that *Parkia* plants are likely to contain constituents with broad and diverse biological activities, such as antidiabetic, antimicrobial, antihypertensive, and anti-inflammatory.

Species	Part Used	Method of Preparation	Medicinal Uses	Region/Country	Reference
P. bicolor	Stem bark	Pulverized powder	Wound healing	West coast of Africa and Nigeria	[<u>23]</u>
	Tree		Diarrhea, dysentery	Southwest Nigeria	[<u>31</u>]
	Stem barks	Decoction	Bad cough, measles, and woman infertility	Cameroon	[<u>28]</u>
	Stem barks	Decoction	Diarrhea and skin ulcers	Ghana	[<u>32</u>]
P. biglobosa	Roots & bark	Paste	Dental disorder	Ivory Coast	[<u>29</u>]
	Seed and stem bark	Fresh seeds	Fish poison	West Africa	[<u>33][34]</u>
	Root	Decoction combined with other plants	Infertility	Nigeria	[<u>34]</u>
		Bark infusion with lemon	Diarrhea	Nigeria	[35]
	Stem bark		Anti-snake venom	Nigeria	[<u>36</u>]
	Bark	Paste, decoction	Wound healing leprosy, hypertension, mouth wash, toothpaste	Nigeria	[22][23]
	Leaves and roots	Eyesore	Lotion	Gambia	[23]
	Bark	Hot decoction	Fever	Gambia	[23]
	Bark	Decoction	Malaria, diabetes, amenorrhea, and hypertension	Senegal, Mali, Ghana Togo, and South Africa	[<u>11][37][38]</u> [<u>39][40]</u>
	Roots and bark	Decoction of the roots with	Weight loss	Burkina Faso	[<u>41</u>]

Table 1. The medicinal uses of plants from genus Parkia.

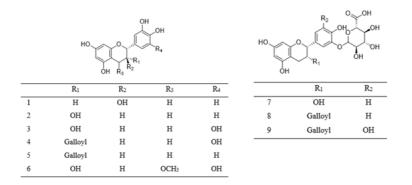
Species	Part Used	Method of Preparation	Medicinal Uses	Region/Country	Reference
		Ximenia americana			
	Stem bark	Boiled bark	Diarrhea, conjunctivitis, severe cough, and leprosy	West Coast Africa	[<u>23][42][43]</u>
	Leaves	Decoction	Violent colic chest and muscular pain	Northern Nigeria	[<u>44</u>]
	bark	Infusion	Dental caries and astringent	Guinea Bissau	[45]
P. biglandulosa	Seed bark	Saponins	Astringent	India	[<u>46</u>]
	Stem bark		Hemagglutination, ulcer	India	[<u>47</u>]
	Tree		Inflammation and ulcer	India	[48]
P. clappertoniana	Tree		Hypertension	Southwest Nigeria	[<u>31</u>]
	Root		Dental caries and conjunctivitis	African	[<u>49][50]</u>
	Seed	Crudely pounded	Labor induction	Ghana	[<u>17</u>]
	Tree		Diarrhea	Kaduna and Nigeria	[<u>51</u>]
	Leaves and bark	Maceration	Epilepsy	Northern Nigeria	[52]
	Stem bark		Chickenpox and measles	Southwest Nigeria	[24]
	Tree		Diabetes, leprosy, and ulcers	Ghana	[53]
	Tree		Mouthwash and toothache	Nigeria	[54]
	Tree		Eczema and skin diseases	Nigeria	[55]
	Bark	Infusion	Hernia	Ghana	[<u>53]</u>

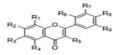
Species	Part Used	Method of Preparation	Medicinal Uses	Region/Country	Reference
P. pendula	Leaves bark		Genital bath	Netherland	[<u>56</u>]
	Bark	Decoction	Malaria	Brazil	[<u>57</u>]
P. speciosa	Seed	Eaten raw or cooked oral decoction	Diabetes	Malaysia	[<u>58]</u>
	Leaves	Pounded with rice and applied on the neck	Cough	Malaysia	[<u>30</u>]
	Root	Decoction	Skin problems	Southern Thailand	[<u>21</u>]
	Root	Decoction taken orally	Hypertension and diabetes	Malaysia	[<u>26</u>]
	Fruit	Eaten raw	Diabetes	Malaysia	[<u>30</u>]
	Seed	Eaten raw	Detoxification and hypertension	Singapore	[<u>59</u>]
			Ringworm	Malaysia	[<u>60</u>]
	Leaf	Decoction	Dermatitis	Indonesia	[<u>20</u>]
	Root	Oral decoction	Toothache	Malaysia	[<u>27</u>]
	Tree		Heart problem, constipation and edema	India	[61][62]
	Leaves		Dermatitis	Indonesia	[<u>63</u>]
	Seed		Loss of appetite	Indonesia	[<u>64</u>]
	Seed	Cooked	Kidney disorder	West Malaysia	[<u>65</u>]
P. timoriana	Bark and twig	Decoction of bark and twig paste	Diarrhea, dysentery, and wound	India	[<u>66]</u>
	Bark	Decoction used to bath	Fever	Gambia	[<u>67</u>]
	Pulp bark	Mixed with lemon	Ulcer and wound	Gambia	[<u>67</u>]

Species	Part Used	Method of Preparation	Medicinal Uses	Region/Country	Reference
	Fruit		Diabetes	Thailand	[<u>68]</u>
	Pod	Pounded in water	Hair washing, skin diseases, and ulcers	India	[<u>19</u>]
	Bark and leaves		Head washing, skin diseases, and ulcers	India	[<u>19]</u>
	Bark	Decoction with Centella. asiatica and Ficus glomerata	Diabetes	India	[<u>16]</u>
P. roxburghii	Tree	Tender pod and bark taken orally	Diarrhea, dysentery, intestinal disorder, and bleeding piles	India	[<u>69</u>]
	The fruit or young shoot	Green portion of the fruit mixed with water to be taken orally	Dysentery, diarrhea, food poisoning, wound, and scabies	India	[<u>70</u>]
	Seed	Grounded and mixed with hot water	Postnatal care, diarrhea, edema and tonsillitis	Malaysia	[<u>71</u>]
	Pod		Diabetes, hypertension, and urinary tract infections	India	[<u>18]</u>
	Leaves, pod, peals, and bark		Diarrhea and dysentery	India	[<u>72</u>]
	Stem bark	Hot water extraction	Diarrhea and dysentery	India	[<u>73</u>]
	Bark	Turn into paste	Used as plaster for eczema	India [<u>11][79][8(</u>	
[<mark>83][84</mark> P. javanica	Bark, pod, and seed	[23][44][86] Taking orally as vegetable	[37][44][86] Dysentery and [23][87 diarrhea	I India][<u>89][90]</u> [<u>15</u>]
	Tree		Inflammation	India	[<u>74]</u> [<u>11][44</u>]
[83] Barb1 fruit		Dysentery and piles	India	[75] [11
			Stom ^[93] achache and	India	[<u>76]</u>

or roasting of *P. biglobosa* seeds results in the alteration of the bioactive components.

Species	Part Used	Method of Preparation	Medicinal Uses	Region/Country	Reference	
	[83]		cholera			ycoside filicoid
	Bark and leaves	Lotion	Sq <mark>be</mark> s and skin diseases [<u>90</u>]		[77]	saponir tannir
	Tree		Diarrhea, cholera dysentery, and food [75][97] poisoning	India	[<u>78]</u>	method present


the whole plant of *P. clappertoniana* ^[79]. Phytochemical analysis of the leaves of *P. platycephala* revealed the presence of phenols, terpenoids, flavonoids ^[98], tannins and saponins ^[99]. Furthermore, flavonoids, alkaloids, phenols, and terpenoids were reported to be present in all parts of *P. speciosa* plant ^[85].


Phytochemicals (primary and secondary metabolites) are well known for their vast medicinal benefits to plants and human [100]. The primary metabolites—such as carbohydrate, proteins, chlorophyll, lipids, nucleic, and amino acids [101][102][103] are responsible for plants' biochemical reactions such as respiration and photosynthesis [102]. The secondary metabolites are majorly alkaloids, phenols, terpenoids, flavonoids, saponins, steroids, tannins, and glycosides, which play important roles in protecting the plants against damages and improving plant aroma, coloration and flavor [101][103], The phytochemicals are present in various parts of the plants especially in the three major parts viz. the leaves, stems and roots. Their percentage composition in each plant may vary depending on environmental conditions, variety and processing methods [101]. Previous studies have shown that phenolic compounds are the most abundant and widely distributed phytoconstituents (45%), followed by steroids and terpenoids (27%), and alkaloids (18%) [101][104]. Alkaloids, flavonoids, tannins, and phenolic compounds are the most common constituents that have been studied in phytochemistry [104][105]. Several compounds from these classes have been identified and investigated from Parkia plants for various pharmacological activities. Despite the enormous reports on the phytochemical screening of different species from the genus Parkia, structure identification and purification of compounds from these species are scarcely reported compared to other genera. The compounds were identified using high-performance liquid chromatography with diode-array detector (HPLC-DAD), liquid chromatography mass spectrometry (LCMS), flow analysis-ionization electrospray ion trap tandem mass spectrometry (FIA-ESI-IT-MS), gas chromatography time-of-flight mass spectrometry (GC/ToF-MS), highperformance liquid chromatography-electrospray ion mass spectrometry (HPLC-ESI-MS), and chromatographic purification from the fraction and characterization through nuclear magnetic resonance (NMR).

3.1. Polyphenolic Compounds

Phenolic compounds found in *Parkia* species are grouped into simple phenol (**10** and **31**), phenolic acids **29–41**, flavone **15–19** and **24**, flavanone **25–26**, flavonol **11–14** and **20–22**, methoxyflavonol **23**, as well as flavanol **1–10** (**Table 2**). Phenolic acids are mostly found in the pods and edible parts of *Parkia*, while polyphenolic compounds are present in the leaves, stem barks, roots, or seeds. The most commonly reported flavonoid in *Parkia* species are flavanol **1** and its isomer **8**, which are obtained from the pod and bark of *P. speciosa* and *P. biglobosa*, respectively ^{[106][107][108]} and the remaining flavanols **11–18** are mainly galloylated catechins. Compound **11** is isolated from ethyl acetate fraction of *P. roxburghii* pod ^[18], while compounds **12–18** are identified from the ethyl

acetate fraction of root/stem of *P. biglobosa* ^[18]. One methoxyflavonol **23**, two flavanone **26–27** and isoflavones **27–28** are identified in the edible parts of *P. javanica* ^[108]. A new flavanone, naringenin-1-4'-di-O-ß-D-glucopyranoside **26** is isolated from *n*–butanol fraction of *P. biglobosa* ^[109], while a new phenylpropanoid is elucidated as 4-(3-hydroxypropyl)benzyl nonanoate from the leaves of *P. javanica* ^[110]. Isolation of compounds **42–43** for the first time as a pure compound was reported from the ethanol extract of *P. biglobosa* bark ^[111]. The structures of these compounds are illustrated in **Figure 1** and **Figure 2**.

	R1	R2	R3	R4	R4	R5	R6	R 7	Rs
11	H	OH	H	н	OH	н	H	OH	H
12	OH	OH	н	н	OH	н	н	OH	OH
13	OH	OH	H	H	O-β-D-glucose	н	OH	OH	H
14	H	OH	H	OH	н	н	H	OH	H
15	н	OH	H	н	OH	н	H	OH	OH
16	OCH ₃	OH	H	н	OCH3	н	н	OCH3	н
17	OCH ₃	OCH ₃	OH	н	OCH3	OH	н	OCH ₃	OCH3
18	OCH ₃	OCH3	OCH ₃	OCH3	н	н	н	OCH ₃	OCH ₃
19	OCH ₃	OCH ₃	OCH ₃	OCH ₃	н	н	H	OCH ₃	н
20	н	OH	н	н	OH	н	OH	OH	OH
21	H	OH	H	н	O- rutinoside	н	H	OH	OH
22	н	O-	H	н	H	н	н	OCH ₃	н
		rutinoside							
23	н	OH	н	н	OH	н	н	OH	OCH ₃
24	н	OH	H	н	н	н	H	OH	OH

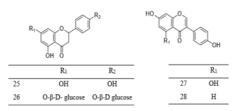


Figure 1. Structural formulas of polyphenolics 1–28, as previously listed in Table 2.

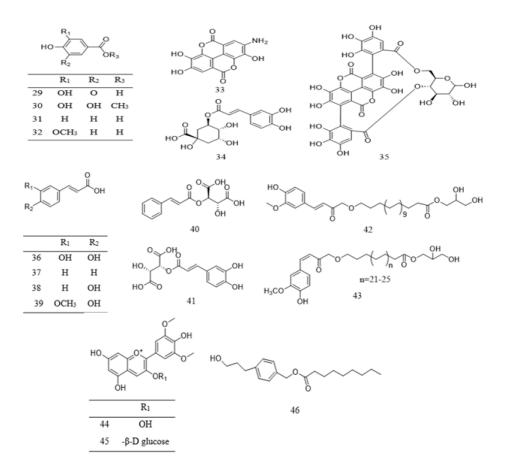


Figure 2. Structural formulas of polyphenolics **29–46**, as previously listed in **Table 2**.

Structure Number	Туре	Compound	Species	Part	Reference
		Polyphenolics			
			P. speciosa	Pod	[<u>107</u>]
1	Flavanol	Catechin	P. biglobosa	Root/bark	[<u>106</u>]
			P. javanica	Edible part	[<u>108]</u>
			P. speciosa	Pod	[<u>107</u>]
2	Flavanol	Epicatechin	P. javanica	Edible part	[<u>108]</u>
			P. biglobosa	Root/bark	[<u>111</u>]
3	Flavanol	Epigallocatechin	P. javanica	Edible part	[<u>108]</u>

 Table 2. Phytochemical compounds from Parkia.

Structure Number	Туре	Compound	Species	Part	Reference
4	Flavanol	Enigelloostashin colleta	P. roxburghii	Pod	[<u>18]</u>
4	Flavaliui	Epigallocatechin gallate	P. biglobosa	Root/bark	[106][111]
5	Flavanol	Epicatechin-3-O-gallate	P. biglobosa	Bark	[<u>111</u>]
6	Flavanol	4-O-methyl-epigallocate-chin	P. biglobosa	Bark	[<u>111</u>]
7	Flavanol	Epigallocatechin-O- glucuronide	P. biglobosa	Root/bark	[<u>106</u>]
8	Flavanol	Epicatechin-O-gallate-O- glucuronide	P. biglobosa	Root/bark	[<u>106</u>]
9	Flavanol	Epigallocatechin-O-gallate-O- glucuronide	P. biglobosa	Root/bark	[<u>106</u>]
10	Flavanol	Theaflavin gallate	P. speciosa	Pod	[112]
		Kaempferol	P. speciosa	Pod	[107]
11	Flavonol		P. javanica	Edible part	[<u>108]</u>
12	Flavonol	Quercetin	P. speciosa	Pod	[<u>107</u>]
13	Flavonol	Hyperin	P. roxburghii	Pod	[<u>18]</u>
14	Flavonol	Apigenin	P. speciosa	Pod	[<u>112</u>]
15	Flavone	3,7,3',4'-Tetrahydroxyflavone	P. clappertoniana	Seeds	[<u>113][114]</u>
16	Flavone	7-Hydroxy-3, 8, 4'- trimethoxyflavone	P. clappertoniana	Leaves	[<u>115</u>]
17	Flavone	2'-Hydroxy-3,7,8,4',5' 'pentamethoxyflavone	P. clappertoniana	Leaves	[<u>115</u>]
18	Flavone	Nobiletin	P. speciosa	Pod	[112]
19	Flavone	Tangeritin	P. speciosa	Pod	[112]
20	Flavonol	Myricetin	P. javanica	Edible part	[<u>108</u>]
			P. speciosa	Pod	[112]
21	Flavonol glycoside	Rutin	P. javanica	Edible	[<u>108</u>]

Structure Number	Туре	Compound	Species	Part	Reference
				part	
			P. speciosa	Pod	[<u>112</u>]
22	Flavonol glycoside	Didymin	P. speciosa	Pod	[<u>112</u>]
23	Methoxy flavonol	Isorhamnetin	P. javanica	Edible part	[<u>108]</u>
24	Flavone	Luteolin	P. javanica	Edible part	[<u>108]</u>
25	Flavanone	Naringenin	P. javanica	Edible part	[<u>108]</u>
26	Flavanone	Naringenin-1-4′-di-O-ß-d- glucopyranoside	P. biglobosa	Fruit pulp	[<u>109]</u>
27	Isoflavone	Genistein	P. javanica	Edible part	[<u>108]</u>
28	Isoflavone	Daidzein	P. javanica	Edible part	[<u>108]</u>
20	Phenolic acid	Gallic acid	P. speciosa	Pod	[107]
29	Phenolic aciu	Gallic aciu	P. bicolor	Root	[28]
30	Phenolic acid	Methyl gallate	P. bicolor	Root	[28]
31	Phenolic acid	Hydroxybenzoic acid	P. speciosa	Pod	[107]
32	Phenolic acid	Vanillic acid	P. speciosa	Pod	[107]
			P. speciosa	Pod	[107]
33	Phenolic acid	Chlorogenic acid	P. javanica	Edible part	[<u>108]</u>
34	Phenolic acid	Ellagic acid	P. speciosa	Pod	[<u>107</u>]
35	Phenolic acid	Punicalin	P. speciosa	Pod	[<u>112</u>]
			P. speciosa	Pod	[107]
36	Phenolic acid	Caffeic acid	P. javanica	Edible part	[<u>108]</u>
37	Phenolic acid	Cinnamic acid	P. speciosa	Pod	[<u>107</u>]

Structure Number	Туре	Compound	Species	Part	Reference
			P. speciosa	Pod	[107]
38	Phenolic acid	P-Coumaric acid	P. javanica	Edible part	[<u>108]</u>
		Ferulic acid	P. speciosa	Pod	[107]
39	Phenolic acid		P. javanica	Edible part	[<u>108]</u>
40	Phenolic acid	Coutaric acid	P. speciosa	Pod	[<u>112</u>]
41	Phenolic acid	Caftaric acid	P. speciosa	Pod	[<u>112</u>]
42	Phenolic	1-(w-Feruloyllignoceryl) - glycerol	P. biglobosa	Bark	[111]
43	Phenolic	1-(w-Isoferuloylalkanoyl) - glycerol	P. biglobosa	Bark	[111]
44	Phenolic	Malvidin	P. speciosa	Pod	[<u>112]</u>
45	Phenolic	Primulin	P. speciosa	Pod	[<u>112]</u>
46	Pheny propanoid	Parkinol	P. javanica	Leaves	[<u>110]</u>
47	Phenol	2-Methoxy phenol	P. biglobosa	Seed	[<u>116]</u>
48	Phenol	2,4-Disiopropyl-phenol	P. biglobosa	Seed	[<u>116</u>]
		Terpenoid and steroid			
			P. biglobosa	Bark	[<u>111]</u>
49	Triterpenoid	Lupeol	P. bicolor	Root	[28]
			P. speciosa	Seeds	[117]
50	Monoterpenoid	Limonene	P. biglobosa	Seed	[<u>116</u>]
51	Triterpenoid	Ursolic acid	P. javanica	Leaf/stem	[<u>88</u>]
52	Triterpenoid	Parkibicoloroside A	P. bicolor	Root	[<u>118]</u>
53	Triterpenoid	Parkibicoloroside B	P. bicolor	Root	[<u>118]</u>
54	Triterpenoid	Parkibicoloroside C	P. bicolor	Root	[<u>118]</u>
55	Triterpenoid	Parkibicoloroside D	P. bicolor	Root	[<u>118]</u>

Structure Number	Туре	Compound	Species	Part	Reference	
56	Triterpenoid	Parkibicoloroside E	P. bicolor	Root	[<u>118</u>]	
57	Monoterpenoidal glucoside	8-O-p-Hydroxl-6'-O-p- coumaryl-missaeno-sidic acid	P. javanica	Leaf	[<u>88]</u>	
58	Monoterpenoidal glucoside	7-O-E-3,4- Dimethoxycinnamoyl-6'-O-ß-d- glucopyranosylloganic acid	P. javanica	Leaf	[<u>88</u>]	
59	Diterpene	16-O-Methyl-cass-13(15) ene- 16,18-dionic acid	P. bicolor	Root	[<u>118]</u>	
			P. speciosa	Seed	[<u>117][119]</u> [<u>120]</u>	
60	Steroid	β-Sitosterol	P. javanica	Leaf/stem	[<u>88]</u>	
			P. biglobosa	Seed oil	[121][122]	
61	L Steroid	Steroid Stigma	Stigmasterol	P. speciosa	Seed	[<u>117][119]</u> [<u>120]</u>
			P. biglobosa	Seed oil	[121][122]	
62	Steroid	Stigmasterol methyl ester	P. speciosa	Seed	[<u>117][119]</u>	
63	Steroid	Stigmast-4-en-3-one	P. speciosa	Seed	[<u>123</u>]	
64	Steroid	Stigmasta-5,24(28)-diene-3-ol	P. speciosa	Seed	[<u>117</u>]	
65	Steroid	Campesterol	P. speciosa	Seed	[<u>117][119]</u>	
03	Sterolu	Campesteror	P. biglobosa	Seed oil	[<u>121][122]</u>	
66	Steroid	Stigmastan-6,22-diien,3,6- dedihydo-	P. speciosa	Seed	[<u>119]</u>	
		Miscellaneous Compound	ds			
		Arachidonic acid	P. speciosa	Seed	[117][119]	
67	Fatty acid		P. bicolor	Seed	[22]	
			P. biglobosa	Seed	[22]	
68	Fatty acid	Linoleic acid chloride	P. speciosa	Seed	[117][119]	
69	Fatty acid	Linoleic acid	P. speciosa	Seed	[<u>117][119</u>]	

Structure Number	Туре	Compound	Species	Part	Reference
			P. biglobosa	Seed	[22]
			P. bicolor	Seed	[22]
70	Fatty acid	Squalene	P. speciosa	Seed	[117][119]
71	Fatty acid	Lauric acid	P. speciosa	Seed	[117][124]
		Stearic acid	P. speciosa	Seed	[<u>117][119]</u> [<u>124]</u>
72	Fatty acid		P. biglobosa	Seed	[22]
			P. bicolor	Seed	[22]
73	Fatty acid	Stearoic acid	P. speciosa	Seed	[124]
74	Fatty acid	Eicosanic acid	P. speciosa	Seed	[<u>124</u>]
75	Fatty acid	Oleic acid	P. speciosa	Seed	[<u>117][119]</u> [<u>124</u>]
			P. speciosa	Seed	[<u>117][119]</u> [<u>124</u>]
76	Fatty acid	Palmitic acid	P. biglobosa	Seed	[22]
			P. bicolor	Seed	[22]
77	Fatty acid	Myristic acid	P. speciosa	Seed	[<u>117][119]</u> [<u>124</u>]
78	Fatty acid	Undecanoic acid	P. speciosa	Seed	[119][124]
79	Fatty acid	Stearolic acid	P. speciosa	Seed	[119]
80	Fatty acid	Hydnocarpic acid	P. speciosa	Seed	[124]
81	Cyclic polysulfide	1,3-dithiabutane	P. speciosa	Seed	[125]
82	Cyclic polysulfide	2,4- Dithiapentane	P. speciosa	Seed	[125]
83	Cyclic polysulfide	2,3,5-Trithiahexane	P. speciosa	Seed	[125]
84	Cyclic polysulfide	2,4,6-Trithiaheptane	P. speciosa	Seed	[125]
85	Cyclic polysulfide	1,2,4-Trithiolane	P. biglobosa	Seed	[116][126]
			P. speciosa	Seed	[126][127]

Structure Number	Туре	Compound	Species	Part	Reference
					[<u>128</u>]
86	Cyclic polysulfide	1,3,5-Trithiane	P. speciosa	Seed	[<u>128]</u>
87	Cyclic polysulfide	3,5-Dimethyl-1,2,4-trithiolane	P. speciosa	Seed	[<u>128]</u>
88	Cyclic polysulfide	Dimethyl tetrasulfid	P. speciosa	Seed	[<u>128]</u>
89	Cyclic polysulfide	1,2,5,6-Tetrathio-cane	P. speciosa	Seed	[<u>128]</u>
90	Cyclic polysulfide	1,2,3,5-Tetrathiane	P. speciosa	Seed	[<u>128</u>]
91	Cyclic polysulfide	1,2,4,5-Tetrathiane	P. speciosa	Seed	[<u>128]</u>
92	Cyclic polysulfide	1,2,4,6-Tetrathie-pane	P. speciosa	Seed	[<u>126][128]</u>
93	Cyclic polysulfide	1,2,4,5,7,8- Hexathiolnane	P. speciosa	Seed	[<u>126</u>]
94	Cyclic poly-sulfide	Lenthionine	P. speciosa	Seed	[<u>117][124]</u> [<u>126][128]</u>
95	Esters	n-Tetradecyl acetate	P. speciosa	Seed	[124]
96	Esters	Methyl linoleate	P. speciosa	Seed	[124]
97	Esters	Ethyl linoleate	P. speciosa	Seed	[<u>117][124]</u>
51	Latera		P. biglobosa	Seed	[<u>116</u>]
98	Ester	Butyl palmitate	P. speciosa	Seed	[117]
99	Esters	Ethyl palmitate	P. speciosa	Seed	[124]
100	Esters	Methyl palmitate	P. speciosa	Seed	[124]
101	Esters	Methyl laurate	P. speciosa	Seed	[124]
102	Esters	Dodecyl acrylate	P. speciosa	Seed	[124]
103	Esters	Methyl hexadecanoate	P. biglobosa	Seed	[<u>116</u>]
104	Ester	Ethyl stearate	P. speciosa	Seed	[117][124]
105	Ester	Methyl octadecanoate	P. biglobosa	Seed	[<u>116</u>]
106	Ester	Butyl stearate	P. speciosa	Seed	[124]
107	Ester	Propanoic acid, 3,3′-thiobis- didodecyl ester	P. speciosa	Seed	[124]

Structure Number	Туре	Compound	Species	Part	Reference
108	Ester	Linoleaidic acid methyl ester	P. speciosa	Seed	[<u>119</u>]
109	Alcohol	2,6,10,14-Hexadecatetraen-1- ol	P. speciosa	Seed	[<u>117]</u>
110	Alcohol	1-Octen-3-ol	P. biglobosa	Seed	[<u>116</u>]
111	Alcohol	3-Ethyl-4-nonanol	P. speciosa	Seed	[<u>117</u>]
112	Alcohol	1-Tridecanol	P. speciosa	Seed	[117][124]
113	Acid	Eicosanoic acid	P. speciosa	Seed	[117]
114	Acid	16-O-Methyl-cass-13(15)ene- 16,18-dionic acid	P. bicolor	Root	[<u>118]</u> [<u>88]</u>
115	Acid	Elaidic acid	P. speciosa	Seed	[117][124]
116	Pyrazine	2,5-Dimethyl pyrazine	P. biglobosa	Seed	[116]
<u>.8]</u> 117	Pyrazine	Trimethyl pyrazine	⁵⁰ P. biglobosa	Seed	[<u>116</u>]
118	Pyrazine	2-Ethyl-3,5-dimethyl pyrazine	P. biglobosa	Seed	[<u>116</u>]
119	Ketone	2-Nonade-canone	P. speciosa	Seed	[117][124]
120	Ketone	2-Pyrrolidi-none	P. speciosa	Seed	[117]
121	Ketone	Cyclodecanone	P. speciosa	Seed	[<u>124]</u>
122	Alkane	Cyclododecane	P. biglobosa	Seed	[<u>116</u>]
123	Alkane	Tetradecane	P. speciosa	Seed	[<u>119</u>]
124	Benzene glucoside	3,4,5-Trimethoxyphenyl-1-O- ß-d-glucopy-ranoside	P. bicolor	Root	[<u>118]</u>
125	Aldehyde	2-Decenal	P. speciosa	Seed	[117]
126	Aldehyde	Cyclo-decanone-2,4- decadienal	P. speciosa	Seed	[117]
127	Aldobudo	Pentanal	P. biglobosa	Seed	[116]
141	Aldehyde	Fentanai	P. speciosa	Seed	[125]
128	Aldehyde	3-Methylthio-propanal	P. biglobosa	Seed	[<u>116</u>]
129	Aldehyde	Tetradecanal	P. speciosa	Seed	[119][124]

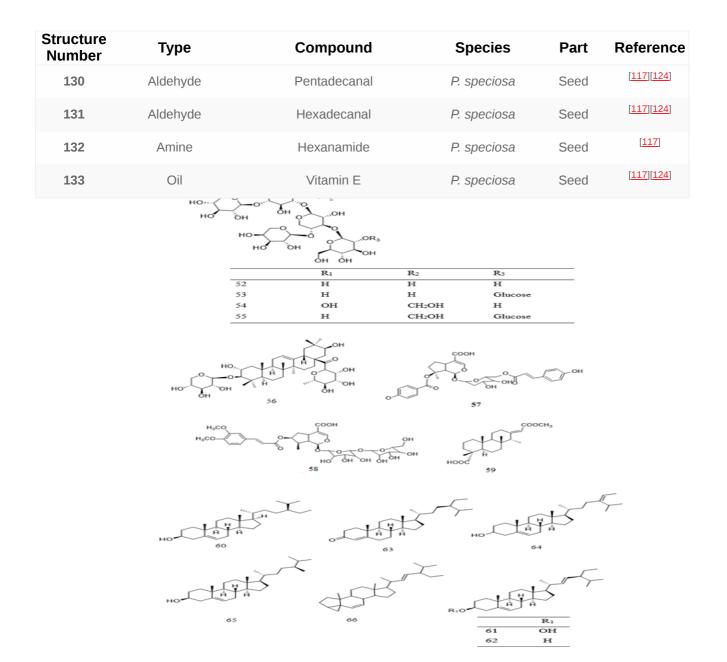


Figure 3. Structural formulas of terpenoids 49–59 and steroids 60–66, as previously listed in Table 2.

Steroidal compounds are also reported in the genus of *Parkia* (**Table 2** and **Figure 3**). β -Sitosterol (**60**) is one of the major components in *P. speciosa* ^[120] and *P. biglobosa* seeds ^[121]. The steroid together with stigmasterol are purified from recrystallization of chloroform/methanol fraction of *P. speciosa* seeds. Its composition in *P. biglobosa* seeds was reported to be about 377 mg/100 g dry weight ^[122]. It is also purified from methanol extract of *P. javanica* leaves ^[88]. Apart from **60**, **61**, and **65**, which are present in *P. javanica* and/or *P. biglobosa*, all other steroids **62–64** and **66** reported from different studies are found in *P. speciosa* seeds. Other than β -sitosterol (**60**), stigmasterol (**61**), and campesterol (**65**) are also among the numerous compounds identified from the seeds of *P. speciosa* ^{[117][119][120][124]}. The percentage composition of **60**, **61**, **62** and a triterpenoid **49** in the plant was reported as 3.42%, 2.18%, 2.29%, and 0.71% *w/w*, respectively ^[85]. In the case of *P. biglobosa*, the percentage composition of **60**, **61** and **62** in the seeds is higher with values of 55.7%, 3.42%, 37.1% for the unfermented, and 56.8%, 3.38%, 35.9% for the fermented, respectively, indicating that fermentation process may lower **61** and **62**, but

increases **60** contents ^[129]. Meanwhile, Akintayo (2004) had recorded **60** as the most abundant compound in *P. biglobosa* seeds, constituting approximately 39.5% *w/w*. Compound **60** was isolated as a pure compound through column chromatographic separation of benzene fraction of *P. bicolor* leaves ^[88].

3.3. Miscellaneous Compounds

In addition to polyphenolic and terpenoids, several other compounds that are mainly volatile including aldehydes, esters, pyrazines, ketones, fatty acids, benzenes, alcohols, amines, sulfides, alkanes, and alkenes have been reported from *Parkia* species (**Table 2**). These compounds are identified mainly from the seeds. Compound **81** is identified from the natural product for the first time in pentane/dichloromethane fraction of *P. speciosa* seed using GC/ToF-MS ^[125]. A greater number of these compounds is identified through phytochemical quantification using different spectroscopic methods. Seven constituents are detected from the fresh seeds of *P. speciosa* through GC/ToF/MS and the compounds are dominated by linear polysulfide, alcohol, and 3'-thiobis-didodecyl ester. Other major compounds include palmitic acid, arachidonic acid, linoleic acid, linoleic acid chloride, and myristic acid ^[124]. However, cyclic polysulfides are the major constituents found in cooked *P. speciosa* seeds (**Figure 4**) ^[125]. In addition, some minor components, such as **82–84** are also identified. Meanwhile, **132** content in *P. speciosa* seed was reported to be 4.15 mg/100 g ^[85], but that of *P. biglobosa* in a recent study was found to be much higher (53.47 mg/100 g). Phospholipid content of *P. biglobosa* seeds was about 451 mg/100 g ^[122]. The seeds also contain palmitic acid, stearic acid, oleic acid, arachidic acid, and linoleic acid, the most abundant fatty acid ^{[22][121]} ^[130]. Similar fatty acids are also reported in the raw seeds of *P. roxburghii* chloroform/methanol extract, in addition to total free phenol (0.56 g/100 g seed flour) and tannins (0.26 g/100 g seed flour) contents ^[87].

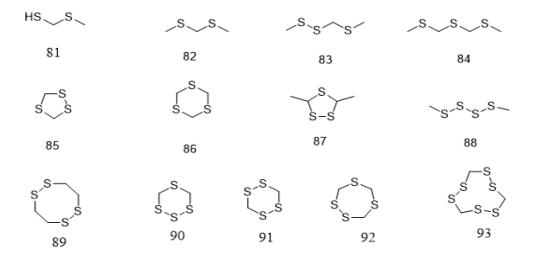


Figure 4. Structural formulas of cyclic polysulfides 81–93, as previously listed in Table 2.

4. Pharmacological Activities of Parkia Species

Numerous bioactive constituents such as phenolics, flavonoids, terpenoids, and volatile compounds present in *Parkia* species may account for its various health benefits, and therefore responsible for the vast pharmacological properties (**Table 3**). However, only few species have been extensively studied.

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
Antimicrobial	P. biglobosa	Leaf, stem bark, and root	Methanolic and aqueous	Active against S. aureus, B. subtilis, E. coli, P. aeruginosa.	[44]
	P. biglobosa	Root bark	Aqueous and methanol	Active against E. coli, S. aureus, K. pneumoniae, P. aeruginosa. Activity: Aqueous > methanol	[<u>82]</u>
	P. biglobosa	Leaves and pod	Aqueous and ethanol	Active against S. aureus, E. aerogenes, S. typi, S. typhimurium, Shigella spp., E. coli, and P. aeruginosa (bacteria), Mucor spp., and Rhizopus spp. (fungi)	[<u>131]</u>
	P. biglobosa	Bark and leaves	Hydro-alcohol and aqueous	Active against <i>E.</i> <i>coli</i> , <i>S. enterica</i> , and <i>S. dysenteriae</i> . Activity: hydroalcoholic > aqueous	<u>[42]</u>
	P. speciosa	Seeds	Water suspension	Active against S. aureus, A. hydrophila, S. agalactiae, S. anginosus, and V. parahaemolyticus isolated from moribund fishes and shrimps	[<u>132</u>]
	P. speciosa	Seed peel	Ethyl acetate (EA) Hexane Ethanol	EA: Four times higher than streptomycin against <i>S. aureus</i> and three times higher for <i>E. coli.</i> Hexane: 50% inhibitory ability of	[133]

Table 3. Pharmacological activities of *Parkia species* extracts and fractions.

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
				streptomycin for both bacteria. Ethanol: no inhibition	
	P. speciosa	Pod extract and its silver	Aqueous	Pod: active against P. aeruginosa Silver particles: active against P. aeruginosa	[<u>134]</u>
	P. speciosa	Sapwood, heartwood, and bark	Methanol	Bark: Active against <i>G. trabeum.</i> Sapwood and heartwood: No effect	[<u>135]</u>
	P. speciosa	Seeds	Chloroform, petroleum ether, Aqueous and methanol	Active against <i>H.</i> <i>pylori</i> except aqueous extract. Activity: chloroform > methanol > petroleum ether	[<u>136</u>]
	P. speciosa	Seed	Methanol Ethyl acetate	Methanol: active against <i>H. pylori.</i> Ethyl acetate: active against <i>E.</i> <i>coli</i> Both: no effect on <i>S. typhimurium, S.</i> <i>typhi</i> , and <i>S sonnei</i>	[<u>137</u>]
	P. javanica	Stem bark	Methanol	Good inhibitory activity against <i>E.</i> <i>coli</i> , <i>S. aureus S.</i> <i>pyogenes</i> found in chronic wound	[<u>138]</u>
	P. javanica	Stem bark	Methanol	Active against four <i>Vibrio cholerae</i> strains	[<u>139</u>]
	P. javanica	Leaves	Gold and silver nanoparticles	Good inhibitory activity against S. aureus	[<u>140]</u>
	P. javanica	Bark	Methanol extract and semi-polar fractions	Active against Neisseria gonorrhoeae.	[<u>76]</u>

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
			(chloroform and ethyl acetate)	Chloroform showed the best activity	
	P. javanica	Seeds, leaves and skin pods	Aqueous	Active against S. aureus, A. hydrophila, and S. typhimurium Not active against E. coli	[<u>141]</u>
	P. clappertoniana	Leaves and barks	Ethanol	Active against Salmonellae and Shigella	[<u>51</u>]
	P. clappertoniana	Stem bark and leaves	Aqueous and methanol	Active against S. aureus and P. aeruginosa. Methanol extract was more potent	[<u>49</u>]
	P. biglandulosa	Leaf	Methanol	Active against E. coli, P. aeruginosa, and S. aureus	[<u>142]</u>
	P. filicoidea	Stem barks	Aqueous, acetone and ethanol	Active against S. aureus, K. pneumoniae, P. aeruginosa, S. viridans and B. subtilis. Not active against E. coli	[<u>96]</u>
	P. bicolor	Leaves	Ethyl acetate, ethanol and aqueous	Active against E. coli, S. aureus, P. aeruginosa, A. niger, B. cereus and a fungus, C. utilis	[23]
	P. bicolor	Roots	Methanol, ethyl acetate and Aqueous	Active against C. diphtheria, K. pneumoniae, P. mirabilis, S. typhi, and S. pyogenes	[<u>28]</u>
	P. pendula	Seeds	Lectin	Reduced cellular infectivity of human cytomegalovirus in human embryo lung (HEL) cells.	[<u>143]</u>

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
	P. speciosa	Seeds and pods	Chloroform	Strong glucose- lowering activity in alloxan-induced diabetic rats Activity: seeds > pod	[<u>144]</u>
Hypoglycemic	P. speciosaRind, leavesglucosidase acand seedsEthanolin ratActivity: rind >	Activity: rind > leaf	[<u>145]</u>		
	P. speciosa	Seed	Chloroform	Reduced plasma glucose levels in alloxan-induced diabetic rats	[120]
P. biglobosa Fermented Methanol and plass seeds aqueous allo d	Reduced fasting plasma glucose in alloxan-induced diabetic rats	[146][147]			
	P. biglobosa	Seeds	Protein	Significantly increased lipid peroxidation product levels in brain and testes of diabetic rats	[<u>148]</u>
	P. biglobosa	Seeds	Methanol and fractions (chloroform and n- hexane)	Showed glucose- lowering effect Activity: chloroform > methanol > n- hexane	[<u>37]</u>
	P. javanica	Fruits	Ethyl acetate fraction	Reduced blood glucose inhibited α- glucosidase and α- amylase in streptozotocin- induced diabetic rats	[<u>18]</u>
Antitumor/ Anticancer	P javanica	Fruits	Aqueous methanol	Increased apoptosis in sarcoma-180 cancer cell lines	[<u>149]</u>

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
	P javanica	Seeds	Methanol	Caused 50% death in HepG2 (liver cancer cell) but not cytotoxic to normal cells	[<u>90</u>]
	P javanica	Seeds	Lectin	Inhibited proliferation in cancerous cell lines; P388DI and J774, B-cell hybridoma and HB98 cell line	[<u>150]</u>
	P. speciosa	Seed coats	Methanol extract	Demonstrated selective cytotoxicity to MCG-7 and T47D (breast cancer), HCT-116 (colon cancer)	[<u>151]</u>
	P. speciosa	Pods	Methanolic ethyl acetate fraction	Showed selective cytotoxicity on breast cancer cells MCF-7	[152]
	P. biglobosa	Leaves and stem	Methanol	Antiproliferative effect in human cancer cells T-549, BT-20, and PC-3	[<u>153]</u>
	P. filicoidea	Leaves	Methanol	Antiproliferative effect in in human cancer cells T-549, BT-20, and PC-3	[<u>153]</u>
Antiproliferative and anti- mutagenic	P. biglandulosa	Seeds	Lectin	T cell mitogen and antiproliferative against P388DI and J774 cancer cell lines	[<u>150]</u>
Antihypertensive	P. speciosa	Seeds	Aqueous	Showed moderate ACE-inhibitory activity in in vitro	[<u>154]</u>
	P. speciosa	Seeds	Peptide	Inhibited angiotensin- converting enzyme	[<u>155][156]</u>

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
				(ACE) in rats. No effect observed in non-hydrolyzed samples	
	P. speciosa	Pods	Methanol	Prevented the increases in blood pressure and angiotensin- converting enzyme (ACE) and restored nitric oxide in hypertensive rat model	[<u>112]</u>
	P. biglobosa	Stem bark	Aqueous	Induced hypotension in adrenaline-induced hypertensive rabbits	[<u>157]</u>
	P. biglobosa	Roasted and fermented seeds	Aqueous	Induced relaxation in rat aorta precontracted with phenylephrine in the presence or absence of endothelium.	[<u>158]</u>
	P. biglobosa	fermented seeds	Aqueous	Lower blood pressure, blood glucose, and heart rate, high level of magnesium as well as improved lipid profile in patients with hypertension	[<u>159]</u>
Antidiarrheal	P. biglobosa	Stem bark	Aqueous and fractions	The extract of stem bark exhibit dose- dependent antidiarrheal activity at different concentrations in albino rats with castor oil-induced diarrhea	[<u>91]</u>
	P. biglobosa	Leaves and stem bark	Aqueous and ethanol	Reduced frequency of stooling in	[<u>160]</u>

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
			-	castor-oil induced diarrhea in rats	
	P. biglobosa	Stem-bark	70% Methanol	The extract exhibited 100% protections at 100 and 200 mg/kg bw in the diarrheal rats	[<u>35]</u>
	P. filicoidea	Stem bark	Aqueous	Reduced frequency of stooling and improved transit time at 100 and 200 mg/kg bw	[<u>161]</u>
	P. speciosa	Leaves	Ethanol	Reduced mucosal injury and increased in periodic acid-Schiff (PAS) staining induced by ethanol	[<u>162]</u>
Antiulcer	P. speciosa	Seed	Ethanol	Decreased gastric juice acidity, lesion length, collagen content and fibrosis in indomethacin- induced peptic ulcer in rats	[<u>163]</u>
	P. platycephala	Leaves	Ethanol	Reduced gastric mucosal lesion induced by ethanol, ischemia- reperfusion and ethanol-HCl	[<u>164]</u>
Antianemic	P. biglobosa	Combination of fermented seed with other fermented products	Aqueous	Increased hemoglobin, red blood cell, white blood cell levels and packed cell volume in albino rats	[<u>165]</u>
	P. biglobosa	Seeds	Ethanol	Increased hemoglobin levels in NaNO ₂ -induced anemic mice	[166]

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
	P. speciosa	Seeds	Ethanol	Increased hemoglobin levels in NaNO ₂ -induced anemic mice	[<u>166]</u>
Antiangiogenic	P.biglandulosa	Fruit and β- sitosterol	Ethanol	The extract and the isolated compound showed antiangiogenic activity on the caudal fin of adult zebrafish	[<u>167]</u>
	P. speciosa	Pods	Methanol and water sub-extract	Inhibited more than 50% micro vessel outgrowth in rat aortae and HUVECs	[<u>152]</u>
Antimalarial	P. biglobosa	Stem bark	Methanol and fractions	Showed antiplasmodial activity caused by <i>P. berghei</i> and <i>P.</i> falciparum	[11]
Nephroprotective	P. clappertoniana	Seed	Aqueous	Reduced serum creatinine, Na, urine proteins and leukocytes and kidney weight in gentamicin-induced renal damage in rats	[53]
Hepatoprotective	P. biglobosa	Stem barks	Methanol	Reduced serum alanine and aspartate transaminases, and alkaline phosphatase in paracetamol- induced hepatotoxicity rat model	[<u>168]</u>
Wound healing	P. pendula	Seeds	Lectin	Increased skin wound repair in immunosuppressed mice	[<u>169]</u>

Activity	Species	Part	Type of Extract/Compound	Key Findings	References
Anti- inflammatory	P. speciosa	Pods	Ethyl acetate fraction	Reduced iNOS activity, COX-2, VCAM-1 and NF- κB expressions in cardiomyocytes exposed to tumor necrosis factor-α	[<u>170]</u>
	P. speciosa	Pods	Ethyl acetate fraction	Reduced iNOS activity, COX-2, VCAM-1 and NF- κB expressions in HUVECs exposed to tumor necrosis factor-α	[<u>171</u>]
	P. biglobosa	Stalk	Methanol	Inhibited croton pellet granuloma formation and carrageenin- induced rat paw edema	[<u>172]</u>
	P. biglobosa	Seeds	Lectin	Lectin showed anti- inflammatory effect by inhibition of pro- inflammatory cytokine release and stimulation of anti-inflammatory cytokine release on peritonitis induced model mice	[<u>173]</u>
	P. biglobosa	Stem bark	Hexane	Reduced carrageenan- and PMA-induced edema in mice	[<u>29]</u>
	P. biglobosa	Fruit	70% Methanol	Increased percentage protection of the human red blood cell membrane	[<u>174]</u>
	P. platycephala	Seeds	Lectin	Lectin showed antinociceptive effect in the mouse	[175]

Activity	Species	Part	Type of Extract/Compound	5 0	References
				model of acetic acid-induced	
Antioxidant	P. javanica	Leaves	Hexane, ethyl acetate, and methanol	Methanol extract showed the highest antioxidant potential activities (DPPH test) of about 85% and (FRAP test) of about 0.9 mM Fe (II)/g dry	[<u>176</u>]
	P. javanica	Leaves	Aqueous, ethanol and methanol	All the extracts exhibited good antioxidant activity. The aqueous extract showed the highest values of 47.42 and 26.6 mg of ascorbic acid equivalent/g in DPPH and FRAP tests, respectively	[<u>177</u>]
<u>1][186][187][188][189</u>]	[<mark>42</mark>] P. javanica	145][79][89][91][1 Pods	86][188][189][199][199][191]d acetone	High content of total phenolic and flayspoid. Shaves high reducing power and strong radical scavenging activity.	<u>.93</u>] [<u>178]</u>
	P. javanica [<u>196]</u>	Fruit	Methanol	Showed increased DPPH and ferric- reducing power activities concentration- dependently	[<u>179</u>]
	P. speciosa	Pod	Methanol	Increased DPPH scavenging activity	[<u>180</u>]
<u>2</u>]	P. speciosa	Pod	Ethyl acetate fraction	Reduced NOX4, SOD1, p38 MAPK protein expressions and ROS level	[<u>171</u>]
[<u>13</u> [<u>137]</u>	P. speciosa	Pod	Aqueous and ethanolic	Increased DPPH and ABTS	[<u>107</u>]

and $y_{2-y_{4}}$ in the seeds ^[126]. However, possible mechanism of the polysumdes was not elucidated. Both pod extract and its synthesized silver nanoparticles exhibit antibacterial activity, with the latter shows higher activity against *P. aeruginosa* ^[134]. A similar antibacterial activity is also seen with aqueous extract of *P. speciosa* leaves

Activity	Species	Part E	Type of xtract/Compound	Key Findings	References
[133]		[<u>135]</u>		scavenging activities, reduced lipid peroxidation Activity: ethanol > aqueous	
	P. speciosa	Seeds	Ethanol	Extract exhibited significant activity (DPPH and FRAP tests)	[<u>198]</u> [<u>181]</u> [<u>199]</u>
	P. speciosa	Seed coats and pods [<u>141</u>]		Reduced Heinz ^[140] body formation in erythrocytes [76] incubated with acetyl phenylhydrazine. Activity: seed coat > pods >	[<u>182]</u>
	P. speciosa	Pods	[<u>47]</u> Ethanol	Increased DPPH scavenging activity	[<u>200]</u> [<u>183]</u>
	P. biglobosa	Fermented and unfermented seed	Aqueous [23]	Fermented seed increased reduction of Fe ³⁺ to Fe ²⁺ .	[<u>184]</u>
[<u>201</u>]	P. biglobosa	Stem bark	Aqueous- methanolic	Mathypated ferric- induced lipid peroxidation in rat tissues and increased scavenging activities against DPPH and ABTS, ferric-reducing ability	[<u>185]</u>
	P. biglobosa	Fruit	Methanol and hydro-ethanol	Increased DPPH scavenging activity and reducing power.	[<u>179]</u>
נוווכב ווו זוזט ;	P. biglobosa	Fruit	Hydroethanolic and methanol	Increased scavenging activity against DPPH free radical Activity: methanol > hydroethanolic	[<u>179]</u>

conducted. Most of the studies have studied the activity in the seeds and pods [120][144][145][202].

Rebicevizationesn HPUS/EEC is staushenvusighilf and note inhibitory helitikity I (\$C, DPP. 0582, 2 m) (phen \$014 6 km) knyalirezty: ABTCS size APP habise (2 yethey keep posted in the phenomenal sectory of the phenometry of the

An in vivo study conducted on both seeds and pods of *P. speciosa* in alloxan-induced diabetic rats, indicated that only chloroform extract of both pods and seeds exhibited strong glucose-lowering activity. The hypoglycemic activity of the seeds was higher than that of the pods (57% and 36%, respectively) ^[144]. A mixture of 66% β sitosterol **60** and 34% stigmasterol **61** is believed to be responsible for the hypoglycemic effect of the seeds demonstrated 83% decrease in blood glucose level (100 mg/kg body weight) compared to glibenclamide (111% at 5 mg/kg bw) ^[120]. Similarly, stigmast-4-en-3-one **63** was identified as the compound responsible for the 84% reduction in blood glucose level at 100 mg/kg bw of the pod extract of *P. speciosa* ^[123]. Both compounds (β sitosterol and stigmasterol) are believed to reduce blood glucose level by regenerating remnant β -cells and stimulating insulin release ^[146] via augmentation of GLUT4 glucose transporter expression ^[147]. Stigmasterol is also reported to inhibit the β -cells apoptosis ^[204].

In other *Parkia* species, methanol crude extracts and fractions of *P. timoriana* pods showed significant α glucosidase and α -amylase inhibitory activities in streptozotocin-induced diabetic rats. Ethyl acetate fraction had
the highest α -glucosidase inhibitory and moderate α -amylase inhibitory activities, with maximal reduction in blood
glucose level back to normal observed on day 14 at the dose of 100 mg/kg body weight ^[18]. α -Amylase functions to
hydrolyze starch into maltose and glucose ^[205]. Bioassay-guided chemical investigation of the most active ethyl
acetate fraction revealed epigallocatechin gallate **4** and apigenin **14** were responsible for the antidiabetic activity
^[18].

Oral administration of *P. biglobosa* methanol and aqueous extracts of fermented seeds exhibited different degrees of hypoglycemic effects on fasting plasma glucose when tested on alloxan-induced diabetic rats after four weeks ^{[206][207]}. Oral administration of *P. biglobosa* seeds methanol extract (1 g/kg body weight) lowered blood glucose level by 44.1% at 8 h as compared with glibenclamide (37.9%) in alloxan-induced diabetic rats. Its chloroform fraction exerted maximum glucose-lowering effect (65.7%), while n-hexane fraction had the lowest (4.7%) ^[86]. As previously mentioned, similar underlying mechanism of the hypoglycemic activity of the plant species is suggested which is via an improvement in pancreatic islet functions to release insulin, while abolishing insulin resistance ^[208]. For future study directions, investigations on the effects of the plant extracts and pure compounds on insulin release and signaling pathways that might be involved in the glucose-lowering properties could be conducted. The compounds should also be studied clinically.

4.3. Anticancer Activity

Cancer is one of the diseases that cause death of millions worldwide. Dietary intake of raw seeds was also reported to significantly lower the occurrence of esophageal cancer in southern Thailand ^[209]. The methanol extract

of *P. speciosa* seeds exhibited a moderate antimutagenic activity in the Ames test ^[210], but weak activity in Epstein–Barr virus inhibitory assay ^[211]. The methanol extract of the seed coats demonstrated selective cytotoxicity against MCG-7 and T47D (breast cancer), HCT-116 (colon cancer) and HepG2 (hepatocarcinoma) cells, while its ethyl acetate fraction only showed selective cytotoxicity against MCF-7, breast cancer cells ^[152].

Substances that enhance mitogenesis of lymphocytes may be useful as antitumor or antiproliferative and immunomodulator agents ^[212]. Lectin obtained from the *P. speciosa* seeds exerted mitogenic activity in both rat thymocytes and human lymphocytes by stimulating the incorporation of thymidine into DNA cell, which activity was comparable to the known T-cell mitogens like pokeweed mitogen, concanavalin A and phytohemagglutinin ^{[6][213]}. Lectins isolated from the seeds of *P. biglandulosa* and *P. roxburghii* have demonstrated antiproliferative effect on murine macrophage cancer cell lines—P 388DI and J774. The seed extract *P. roxburghii* also inhibits the proliferation of B-cell hybridoma cell line, HB98 ^[150], and HepG2 cells without affecting the normal cells ^[90]. The monosaccharide saponins **52–55** isolated from *P. bicolor* root also exhibit moderate antiproliferative effect IC₅₀ ranging from 48.49 to 81.66 µM ^[118]. To researchers' knowledge, the anticancer effects of *Parkia* extracts were only investigated in cell lines—limited to cell growth inhibition—not yet studied in in vivo models.

An in vitro study on human cancer cell lines has shown that the methanol extracts of *P. biglobosa* and *P. filicoidea* exhibit different degrees of antiproliferative activities on T-549 and BT-20 (prostate cancer), PC-3 (acute T cell leukemia Jurka), and SW-480 (colon cancer) at concentrations of 20 and 200 µg/mL. *P. biglobosa* also exhibits higher cytotoxic activity against all types of cancer cell lines used compared with *P. filicoidea* ^[153]. The antitumor property could be attributable to the antiangiogenic activity of some species of *Parkia* such as *P. biglandulosa* and *P. speciosa* extracts ^{[152][167]}. Angiogenesis or neovascularization is involved in metastasis of solid tumors. Methanol extract of the *P. speciosa* fresh pods was reported to exhibit antiangiogenic activity by more than 50% inhibition of microvessel outgrowth in rat aortae and human umbilical vein endothelial cells forming capillary-like structures in Matrigel matrix. The effect may be attributable to the ability of the cells, therefore beneficial in the treatment of cancer owing to its capacity to prevent tumor neovascularization ^[214].

The plant bioactive compounds could also possibly increase apoptotic signaling pathway by elevating caspase activation as similarly shown by the same compounds in other plant species ^[215], as well as a direct inhibition on DNA synthesis, related to the ability to inhibit the expressions of several tumor- and angiogenesis-associated genes. Future studies should explore on the possible mechanism of action that are responsible for the anticancer activity. Additionally, future research on human studies is needed to confirm the outcomes seen in the laboratories.

4.4. Antihypertensive Activity

Antihypertensive activity of *P. biglobosa* seeds has been demonstrated in both animals and human. Only a clinical study was conducted which observed lower blood pressure, blood glucose and heart rate, high level of magnesium as well as improved lipid profile in patients with hypertension consuming fermented seeds of *P. biglobosa* in comparison with the non-consumption group ^[159]. Administration of 1.9 mg/mL of seed extract of *P. biglobosa*

lowers the arterial blood pressure level in a rat model, possibly due to its ability to slow down the heart rate ^[216] and to induce vascular relaxation ^[158]. The latter effect is also seen with roasted seeds of the plant ^[158]. Other than the seeds, *P. biglobosa* stem bark aqueous extract also demonstrates good hypotensive effect in adrenaline-induced hypertensive female rabbits, which effect is comparable to antihypertensive drugs, propranolol and nifedipine ^[157]. The hypotensive properties of *P. biglobosa* could be owing to its main phytochemicals–phenolics and flavonoids. Catechin and its derivatives are among the most common compounds detected in the plant. These compounds promote vasorelaxation ^[217] by modulating nitric oxide availability ^[218] and inhibiting angiotensin-converting enzyme (ACE) ^[219], in addition to a reduction in oxidative stress ^[220], leading to blood pressure-lowering effects of the plant extract. The fermented seeds also decrease plasma triglyceride and cholesterol levels in Tyloxapol-induced hyperlipidemic rats ^[221], and platelet aggregation ^[222].

P. speciosa empty pod extract has been reported to prevent the development of hypertension in rats given L-NGnitroarginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, possibly due to its ability to prevent nitric oxide loss ^[122], which is dependent on the availability of endothelial nitric oxide synthase ^[223], as well as to inhibit ACE and oxidative stress and inflammation ^[112]. Both oxidative stress and inflammation are known to play important roles in the pathogenesis of hypertension (Siti et al. 2015). Active peptide obtained from hydrolyzed *P. speciosa* seeds displays ACE-inhibitory effect, ranging from 50.6% to 80.2%, which effect is not observed in the non-hydrolyzed seeds, possibly due its long and bulky structure ^{[155][156]}. However, the study of Khalid and Babji (2018) has demonstrated that the aqueous extract of the seeds also possesses ACE inhibitory activity ^[154]. These studies suggest that the blood pressure-lowering effect of the *P. speciosa* is most likely due to its ACE inhibitory property and nitric oxide regulation, attributable to its rich contents of polyphenols and the presence of peptide. Future studies should involve isolation of the active compounds which have a potential to be developed as a specific inhibitor of ACE. Other possible mechanisms—specific receptor antagonism, such as adrenoceptors and calcium channels, or modification of signaling pathways—of blood pressure-lowering effects of the plant extract or compounds should be explored further.

4.5. Antidiarrheal Activity

The antidiarrheal effect of *Parkia* plants has been investigated using many models such as castor oil- and magnesium-induced diarrhea. The aqueous extract of *P. filicoidea* stem barks reduces the frequency of stooling in rats with castor oil-induced diarrhea, comparable with loperamide ^[161]. The aqueous and ethanol extract of *P. biglobosa* leaves and stem barks also exhibit similar antidiarrheal activity to loperamide, seen as a reduction in stooling frequency and intestinal volume ^{[35][91][160]}. These effects could be attributable to its inhibitory capacity on the propulsive movement of gastrointestinal tract smooth muscles ^[91]. Medicinal plants are believed to exert antidiarrheal activity by enhancing the opening of intestinal potassium channel and stimulating Na⁺/K⁺-ATPase activity, as well as decreasing intracellular calcium concentration, which then promotes gastrointestinal smooth muscle relaxation, leading to diminished diarrhea ^{[224][225][226]}. The potential of these plants as agents to reduce diarrhea can be explored further in irritable bowel syndrome or chemotherapy-induced diarrhea. Their effects on intestinal mucosal barrier, tight junction proteins and inflammatory cytokines among others can be examined.

4.6. Antiulcer Activity

The gastroprotective effect of *Parkia* plants was seen in three species which were *P. speciosa*, *P. platycephala* and *P. biglandulosa* (**Table 3**). The leaves and seeds of *P. speciosa* protected against ethanol- and indomethacininduced gastric ulcer in rats, observed by reductions in the gastric ulcer index and acidity of gastric juice ^{[162][163]}. Lesser collagen and fibrotic ulcer were significantly diminished in the extract-treated group ^[163]. The ethanol extract of *P. platycephala* also showed protective effect in gastric mucosal injury models induced by ethanol, ischemiareperfusion, and ethanol-HCI. However, the extract could not protect against indomethacin-induced gastric lesion ^[164]. These plants are rich in flavonoids. The compounds like catechin and quercetin confer antiulcer effects possibly by eradicating the formation of ROS and modulating mucin metabolism in the gastrointestinal tract ^{[227][228]}. ^[229]. Other possible protective mechanisms could be by reducing gastric acid secretion, thereby decreasing gastric acid pH, as seen with cinnamic caffeic, p-coumaric or ferulic acids—the compounds that are present in the plants ^[230]. Studies on other possible effects of the extracts or bioactive components such as proton pump inhibition could be of interest. In future, the compounds that are responsible for the protective effects should be identified and the possible protective signaling mechanisms should be elucidated. Moreover, clinical trials can be performed to assess the potential use of *Parkia* extracts as an antiulcer agent.

4.7. Antianemic Activity

The fermented seeds of *P. biglobosa* are a rich source of essential minerals such as iron, calcium, thiamine, and phosphorus ^[33] which are necessary in forestalling either iron or non-iron deficiency anemia. Therefore, the antianemic capacity of *P. biglobosa* could be owing to its nutritional composition. The fermented seeds of *P. biglobosa* in combination with other fermented products were reported to be beneficial in the management of anemia as it increased hemoglobin, red blood cells, white blood cells, and packed cell volume ^[165]. The ethanol extract of *P. speciosa* seeds were also investigated in NaNO₂-induced anemic mice. At doses of 400 and 700 mg/kg, an elevation of hemoglobin levels was noted to 0.92 and 0.82 g/dL, respectively ^[166]. The exact mechanism of how *P. speciosa* acts to decrease anemia is still unclear. It could be due to its rich source of the minerals, particularly the iron ^[212]. Another possible mechanism would be stimulation of erythropoiesis process. Both extracts of *P. biglobosa P. biglobosa* and *P. speciosa* can be developed as an alternative iron supplement. However, the effectiveness should be evaluated clinically.

4.8. Anti-Inflammatory Activity

Inflammatory reaction is involved in almost all clinical manifestation. Hence, anti-inflammatory activity of certain plant extracts could be of benefit. Anti-inflammatory activity of *P. biglobosa* stalk ^[172], seeds and stem bark ^[29], *P. speciosa* pods ^{[222][223]} and seeds ^[62], as well as *P. platycephala* seeds ^[175] have been reported using various models of inflammation.

The protective effects of *P. biglobosa* is believed via its inhibitions on the lipoxygenase and cyclooxygenase pathways ^[172], leading to inhibition of pro-inflammatory cytokine release and stimulation of anti-inflammatory cytokine ^[173], as well as increment on membrane stabilization ^[174]. While the *P. speciosa* exerts its anti-

inflammatory by downregulating nuclear factor kappa B cell (NF-κB) and p38 mitogen-activated protein kinase (MAPK) pathways ^{[222][223]}. It is obvious that the plant bioactive components attenuate inflammation by regulating inflammatory and MAPK signaling pathways, which could lead to reduced formation of inflammatory mediators such as cytokines. To date, no study has identified the anti-inflammatory compounds from *Parkia*, which warrants further studies on this aspect, either in experimental animals or human studies.

4.9. Antioxidant Activity

Polyphenolic compounds present in plant foods have been reported to be responsible for their antioxidant activity due to their ability to serve as a hydrogen donor and reducing agent (Amorati and Valgimigli 2012). Both fermented and unfermented seeds of *P. biglobosa* have been reported to contain an appreciable amount of phenolic contents [179][184]. *P. timoriana* pods are also rich in total phenolic and flavonoid contents ^[178]. The antioxidant capacity of the leaves and seeds of *P. speciosa* has been reported to be relatively lower than that of the empty pods and seed mixture, suggesting that the pods possess higher antioxidant contents than other parts of the plant ^[85][214]. The difference in geographical location may affect the composition of the antioxidant compounds in plants. It was reported that *P. speciosa* seeds collected from central Peninsular Malaysia had higher antioxidant capacity than the southern and southwestern regions ^[181]. The compounds present in the plants attenuate oxidative stress possibly by activating Nrf2/Keap1 and MAPK signaling pathways, leading to enhanced expressions of Nrf2 and antioxidant enzymes, such as heme oxygenase-1 ^[231]. *P. speciosa* extracts of seed coats and pods could also reduce the risk of hemolysis by inhibiting Heinz body production in the erythrocytes incubated with a hemolytic agent ^[182], indicating the ability of the extracts to inhibit oxidative destruction of erythrocyte. The finding suggests a potential of the plant extract to reduce hemolytic jaundice, which warrants further research.

4.10. Other Pharmacological Activities

Other than previously mentioned activities, the *P. biglobosa* extract has also been demonstrated to have antimalarial effect ^[11], whereas *P. clappertoniana* ^[53] and *P. biglobosa* ^[168] show nephro- and hepatoprotective effects, respectively (**Table 3**). *P. pendula* seeds also enhance wound healing in immunosuppressed mice ^[169]. However, extensive studies regarding these effects were not performed. Further studies need to be conducted to explore the possible mechanisms that are involved in the aforementioned beneficial effects.

5. Toxicity

Daily consumption of cooked pods of *P. roxburghii* does not impose any significant adverse effect ^[232]. However, eating raw pods may result in bad breath owing to its rich content in volatile disulfide compounds, which are exhaled in breath and the odor can persist for several hours (Meyer, 1987). Many substances have been identified or isolated from *Parkia* seed, such as lectins, non-protein amino acids, and alkaloids ^[233]. However, no acute mortality and observable behavioral change were recorded at doses up to 2000 mg/kg ethyl acetate fraction of *P. roxburghii* pod in rats ^[18]. Investigation on acute and sub-acute toxicity profiles of the aqueous and ethanol extracts of the stem bark of *P. biglobosa* showed that the oral median lethal dose (LD₅₀) was higher than 5000 mg/kg for

both extracts in rats ^[84]. However, in another report, LD_{50} values of the leaves, stems and roots in an acute toxicity study were within the range of 500–5000 mg/kg body weight of fish, suggesting that they are only slightly toxic and, therefore, not potentially dangerous. The adverse effects included respiratory distress and agitated behavior ^[234]. Apart from the barks of *P. biglobosa*, the pods also possess the piscicidal activity that can be used in the management and control of fishponds to eliminate predators ^{[234][235]}. Fatty acids and oils identified from the seeds of *P. biglobosa* and *P. bicolor* were reported to be non-toxic ^[22].

The aqueous extract of *P. clappertoniana* seeds showed no observable maternal and developmental toxicity at 100–500 mg/kg when given orally to Sprague-Dawley rats and mice at different gestational age ($^{[17]}$. *P. platycephala* leaves at 1000 mg/kg on the other hand, caused decreases in body mass, food and water consumption in rats. It also shortened the proestrus and prolonged diestrus phases, as well as reduced uterine weight, suggestive of possible alterations on hormonal levels, but no obvious toxicity on other organs ^[98]. Oral administration of the leaves of *P. speciosa* for 14 days showed no significant histopathological toxicity or mortality in rats at up to 5000 mg/kg ^[162]. In vitro, the plant pods (100 µg/mL) showed no significant cytotoxic effect on normal cell lines ^[152]. Consumption of the seeds up to 30 pieces in a serve does not produce any adverse effects ^[214].

References

- Heymann, E.W.; Lüttmann, K.; Michalczyk, I.M.; Saboya, P.P.P.; Ziegenhagen, B.; Bialozyt, R. DNA fingerprinting validates seed dispersal curves from observational studies in the neotropical legume Parkia. PLoS ONE 2012, 7, e35480.
- 2. Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide, version 4; World Agroforestry Centre: Nairobi, Kenya, 2009.
- Luckow, M.; Hopkins, H.C.F. A cladistic analysis of Parkia (Leguminosae: Mimosoideae). Am. J. Bot. 1995, 82, 1300–1320.
- 4. Neill, D.A. Parkia nana (Leguminosae, Mimosoideae), a new species from the sub-Andean sandstone cordilleras of Peru. Novon A J. Bot. Nomencl. 2009, 19, 204–208.
- 5. Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem. 2001, 49, 3101–3105.
- Suvachittanont, W.; Peutpaiboon, A. Lectin from Parkia speciosa seeds. Phytochemistry 1992, 31, 4065–4070.
- 7. Ogunyinka, B.I.; Oyinloye, B.E.; Osunsanmi, F.O.; Kappo, A.P.; Opoku, A.R. Comparative study on proximate, functional, mineral, and antinutrient composition of fermented, defatted, and protein isolate of Parkia biglobosa seed. Food Sci. Nutr. 2017, 5, 139–147.

- 8. Alabi, D.A.; Akinsulire, O.R.; Sanyaolu, M.A. Qualitative determination of chemical and nutritional composition of Parkia biglobosa (Jacq.) Benth. Afr. J. Biotechnol. 2005, 4, 812–815.
- 9. Fetuga, B.L.; Babatunde, G.M.; Oyenuga, V.A. Protein quality of some unusual protein foodstuffs. Studies on the African locust-bean seed (Parkia filicoidea Welw.). Br. J. Nutr. 1974, 32, 27–36.
- 10. Hassan, L.G.; Umar, K.J. Protein and amino acids composition of African locust bean (Parkia biglobosa). Trop. Subtrop. Agroecosyst. 2005, 5, 45–50.
- 11. Builders, M.; Alemika, T.; Aguiyi, J. Antimalarial Activity and isolation of phenolic compound from Parkia biglobosa. IOSR J. Pharm. Biol. Sci. 2014, 9, 78–85.
- Ifesan, B.O.T.; Akintade, A.O.; Gabriel-Ajobiew, R.A.O. Physicochemical and nutritional properties of Mucuna pruriens and Parkia biglobosa subjected to controlled fermentation. Int. Food Res. J. 2017, 24, 2177–2184.
- Iheke, E.; Oshodi, A.; Omoboye, A.; Ogunlalu, O. Effect of fermentation on the physicochemical properties and nutritionally valuable minerals of locust bean (Parkia biglobosa). Am. J. Food Technol. 2017, 6, 379–384.
- Abdullahi, I.N.; Chuwang, P.Z.; Anjorin, T.S.; Ikemefuna, H. Determination of Mineral Accumulation through Litter Fall of Parkia Biglobosa Jacq Benth and Vitellaria Paradoxa Lahm Trees in Abuja, Nigeria. Int. J. Sci. Res. Agric. Sci. 2015, 2, 0016–0021.
- 15. Singh, N.P.; Gajurel, P.R.; Rethy, P. Ethnomedicinal value of traditional food plants used by the Zeliang tribe of Nagaland. Indian J. Tradit. Knowl. 2015, 14, 298–305.
- 16. Mondal, P.; Bhuyan, N.; Das, S.; Kumar, M.; Borah, S.; Mahato, K. Herbal medicines useful for the treatment of diabetes in north-east India: A review. Int. J. Pharm. Biol. Sci. 2013, 3, 575–589.
- Boye, A.; Boampong, V.A.; Takyi, N.; Martey, O. Assessment of an aqueous seed extract of Parkia clappertoniana on reproductive performance and toxicity in rodents. J. Ethnopharmacol. 2016, 185, 155–161.
- 18. Sheikh, Y.; Maibam, B.C.; Talukdar, N.C.; Deka, D.C.; Borah, J.C. In vitro and in vivo anti-diabetic and hepatoprotective effects of edible pods of Parkia roxburghii and quantification of the active constituent by HPLC-PDA. J. Ethnopharmacol. 2016, 191, 21–28.
- 19. Singh, M.K. Potential of underutilized legume tree Parkia timoriana (DC.) Merr. In Eco-restoration of Jhum fallows of Manipur. J. Pharmacogn. Phytochem. 2019, 8, 1685–1687.
- Roosita, K.; Kusharto, C.M.; Sekiyama, M.; Fachrurozi, Y.; Ohtsuka, R. Medicinal plants used by the villagers of a Sundanese community in West Java, Indonesia. J. Ethnopharmacol. 2008, 115, 72–81.
- 21. Srisawat, T.; Suvarnasingh, A.; Maneenoon, K. Traditional medicinal plants notably used to treat skin disorders nearby Khao Luang mountain hills region, Nakhon si Thammarat, Southern

Thailand. J. HerbsSpices Med. Plants 2016, 22, 35-56.

- 22. Aiyelaagbe, O.O.; Ajaiyeoba, E.O.; Ekundayo, O. Studies on the seed oils of Parkia biglobosa and Parkia bicolor. Plant Foods Hum. Nutr. 1996, 49, 229–233.
- 23. Ajaiyeoba, E. 0 Phytochemical and antibacterial properties of Parkia biglobosa and Parkia bicolor leaf extracts. Afr. J. Biomed. Res. 2002, 5, 125–129.
- Oladunmoye, M.K.; Kehinde, F.Y. Ethnobotanical survey of medicinal plants used in treating viral infections among Yoruba tribe of South Western Nigeria. Afr. J. Microbiol. Res. 2011, 5, 2991– 3004.
- 25. Rathi, R.S.; Misra, A.K.; Somnath, R.; Verma, S.K.; Singh, S.K. Potential of a lesser known tree species Parkia roxburghii G. Don of North East India. Indian For. 2012, 138, 476–479.
- 26. Ong, H.C.; Ahmad, N.; Milow, P. Traditional Medicinal Plants Used by the Temuan Villagers in Kampung Tering, Negeri Sembilan, Malaysia. Stud. Ethno-Med. 2011, 5, 169–173.
- 27. Ong, H.C.; Chua, S.; Milow, P. Ethno-medicinal plants used by the Temuan villagers in Kampung Jeram Kedah, Negeri Sembilan, Malaysia. Stud. Ethno-Med. 2011, 5, 95–100.
- Fotie, J.; Nkengfack, A.E.; Peter, M.G.; Heydenreich, M.; Fomum, Z.T. Chemical constituents of the ethyl acetate extracts of the stem bark and fruits of Dichrostachys cinerea and the roots of Parkia bicolor. Bull. Chem. Soc. Ethiop. 2004, 18, 111–115.
- 29. Kouadio, F.; Kanko, C.; Juge, M.; Grimaud, N.; Jean, A.; N'Guessan, Y.T.; Petit, J.Y. Analgesic and antiinflammatory activities of an extract from Parkia biglobosa used in traditional medicine in the ivory coast. Phytother. Res. 2000, 14, 635–637.
- Ong, H.C.; Zuki, R.M.; Milow, P. Traditional Knowledge of Medicinal Plants among the Malay Villagers in Kampung Mak Kemas, Terengganu, Malaysia. Stud. Ethno-Med. 2011, 2011, 175– 185.
- Lawal, I.O.; Uzokwe, N.E.; Igboanugo, A.B.I.; Adio, A.F.; Awosan, E.A.; Nwogwugwu, J.O.; Faloye, B.; Olatunji, B.P.; Adesoga, A.A. Ethno medicinal information on collation and identification of some medicinal plants in Research Institutes of South-west Nigeria. Afr. J. Pharm. Pharmacol. 2010, 4, 1–7.
- 32. Henry, S.G.; Francis, A.; Kofi, A. Ethnobotanical survey of medicinal plants used for the treatment of diarrhoea and skin ulcer in the Brong Ahafo region of Ghana. J. Med. Plants Res. 2013, 7, 3280–3285.
- 33. Campbell-Platt, G. African locust bean (Parkia species) and its west african fermented food product, dawadawa. Ecol. Food Nutr. 1980, 9, 123–132.
- 34. Igoli, J.O.; Ogaji, O.G.; Tor-Anyiin, T.A.; Igoli, N.P. Traditional medicine practice amongst the Igede people of Nigeria. Part II. Afr. J. Tradit. Complementary Altern. Med. 2005, 2, 134–152.

- 35. Agunu, A.; Yusuf, S.; Andrew, G.O.; Zezi, A.U.; Abdurahman, E.M. Evaluation of five medicinal plants used in diarrhoea treatment in Nigeria. J. Ethnopharmacol. 2005, 101, 27–30.
- 36. Asuzu, I.U.; Harvey, A.L. The antisnake venom activities of Parkia biglobosa (Mimosaceae) stem bark extract. Toxicon 2003, 42, 763–768.
- 37. Fred-Jaiyesimi, A.A.; Abo, K.A. Hypoglycaemic effects of Parkia biglobosa (Jacq) Benth seed extract in glucose-loaded and NIDDM rats. Int. J. Biol. Chem. Sci. 2009, 3, 545–550.
- Karou, S.D.; Tchacondo, T.; Djikpo Tchibozo, M.A.; Abdoul-Rahaman, S.; Anani, K.; Koudouvo, K.; Batawila, K.; Agbonon, A.; Simpore, J.; de Souza, C. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the Central Region of Togo. Pharm. Biol. 2011, 49, 1286–1297.
- Grønhaug, T.E.; Glæserud, S.; Skogsrud, M.; Ballo, N.; Bah, S.; Diallo, D.; Paulsen, B.S. Ethnopharmacological survey of six medicinal plants from Mali, West-Africa. J. Ethnobiol. Ethnomed. 2008, 4, 26.
- 40. Abo, K.A.; Fred-Jaiyesimi, A.A.; Jaiyesimi, A.E.A. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J. Ethnopharmacol. 2008, 115, 67–71.
- 41. Pare, D.; Hilou, A.; Ouedraogo, N.; Guenne, S. Ethnobotanical study of medicinal plants used as anti-obesity remedies in the nomad and hunter communities of Burkina Faso. Medicines 2016, 3, 9.
- Millogo-Kone, H.; Guissoe, P.I.; Nacoulma, O.; Traore, A.S. Study of the antibacterial activity of the stem bark and leaf extracts of Parkia biglobosa (Jacq.) Benth. on Satphylococcus aureus. Afr. J. Tradit. Complementary Altern. Med. 2006, 3, 74–78.
- Quansah, L.; Mahunu, G.K.; Tahir, H.E.; Mariod, A.A. Parkia biglobosa: Phytochemical Constituents, Bioactive Compounds, Traditional and Medicinal Uses. In Wild Fruits: Composition, Nutritional Value and Products; Springer: Berlin/Heidelberg, Germany, 2019; pp. 271–284.
- 44. Udobi, C.E.; Onaolapo, J.A. Phytochemical analysis and antibacterial evaluation of the leaf stem bark and root of the African locust bean (Parkia biglobosa). J. Med. Plants Res. 2009, 3, 338–344.
- 45. Abreu, P.M.; Martins, E.S.; Kayser, O.; Bindseil, K.U.; Siems, K.; Seemann, A.; Frevert, J. Antimicrobial, antitumor and antileishmania screening of medicinal plants from Guinea-Bissau. Phytomedicine 1999, 6, 187–195.
- 46. Rupesh, P.; Pal, S.C.; Pavani, A.; Gadge, M.S. Quantitave estimation of the active constituents of Parkia biglandulosa by using HPTLC and FTIR. Int. J. Pharma Bio Sci. 2010, 1, 315–332.
- 47. Khond, M.; Bhosale, J.D.; Arif, T.; Mandal, T.K.; Padhi, M.M.; Dabur, R. Screening of some selected medicinal plants extracts for in-vitro antimicrobial activity. Middle-East J. Sci. Res. 2009,

4, 271–278.

- 48. Pingale, R.; Pokharkar, D.; Phadatare, S.P.; Gorle, A. Pharmacognostic Evaluation of Parkia biglandulosa bark. Int. J. Pharm. Phytochem. Res. 2016, 8, 1160–1163.
- 49. Banwo, G.O.; Abdullahi, I.; Duguryil, M. The antimicrobial activity of the stem-bark and leaf of Parkia clappertoniana Keay family Leguminosae against selected microorganisms. Niger. J. Pharm. Res. 2004, 3, 16–22.
- 50. Nwodo, N.J.; Ibezim, A.; Ntie-Kang, F.; Adikwu, M.U.; Mbah, C.J. Anti-trypanosomal activity of Nigerian plants and their constituents. Molecules 2015, 20, 7750–7771.
- 51. Lawal, M.S.; Sani, A.M.; Dangmwan, D.S.; Yahaya, U. Antimicrobial potentials of Parkia clappertoniana Jacq, Boswellia dalzielli hutch and Carica papaya L. ethanolic extract on multidrug resistant Diarrheal salmonallae and Shigellae Bacteria. Biochem. Mol. Biol. 2016, 1, 27.
- Muazu, J.; Kaita, M.H. A review of traditional plants used in the treatment of epilepsy amongst the Hausa/Fulani tribes of northern Nigeria. Afr. J. Tradit. Complementary Altern. Med. 2008, 5, 387– 390.
- 53. Boye, A. Nephroprotective and curative assessment of an aqueous seed extract of Parkia clappertoniana keay in gentamicin-induced renal damage in Sprague-dawley rats. Eur. J. Med. Plants 2014, 4, 234–248.
- Patrick-Iwuanyanwu, K.C.; Wegwu, M.O.; Okiyi, J.K. Hepatoprotective effects of African locust bean (Parkia clappertoniana) and negro pepper (Xylopia aethiopica) in CCl4-induced liver damage in wistar albino rats. Int. J. Pharmacol. 2010, 6, 744–749.
- 55. Obata, O.O.; Aigbokhan, E.I. Ethnobotanical practices among the people of Okaakoko, Nigeria. Plant Arch. 2012, 12, 627–638.
- 56. Van Andel, T.; Behari-Ramdas, J.; Havinga, R.; Groenendijk, S. The medicinal plant trade in Suriname. Ethnobot. Res. Appl. 2007, 5, 351–372.
- 57. Ferreira, A.B.; Ming, L.C.; Haverroth, M.; Daly, D.C.; Caballero, J.; Ballesté, A.M. Plants used to treat malaria in the regions of Rio Branco-Acre state and southern Amazonas state—Brazil. Int. J. Phytocosmetics Nat. Ingred. 2015, 2, 9.
- 58. Mitra, R.; Orbell, J.; Muralitharan, M. Medicinal plants of Malaysia. Asia Pac. Biotech News 2007, 11, 105–110.
- 59. Siew, Y.Y.; Zareisedehizadeh, S.; Seetoh, W.G.; Neo, S.Y.; Tan, C.H.; Koh, H.L. Ethnobotanical survey of usage of fresh medicinal plants in Singapore. J. Ethnopharmacol. 2014, 155, 1450–1466.
- 60. Ripen, J.E.; Noweg, G.T. Economic valuation of medicinal plants in Jagoi Area, Bau, Malaysia. Procedia Soc. Behav. Sci. 2016, 224, 124–131.

- Eswani, N.; Kudus, K.A.; Nazre, M.; Noor, A.G.A.; Ali, M. Medicinal plant diversity and vegetation analysis of logged over hill forest of Tekai Tembeling Forest Reserve, Jerantut, Pahang. J. Agric. Sci. 2010, 2, 189.
- 62. Sonia, N.; Dsouza, M.R. Alisha Pharmacological evaluation of Parkia speciosa Hassk for antioxidant, anti-inflammatory, anti-diabetic and anti-microbial activities in vitro. Int. J. Life Sci. Spec. Issue 2018, 11, 49–59.
- 63. Bahtiar, A.; Vichitphan, K.; Han, J. Leguminous plants in the Indonesian Archipelago: Traditional uses and secondary metabolites. Nat. Prod. Commun. 2017, 12, 461–472.
- 64. Batoro, J.; Siswanto, D. Ethnomedicinal survey of plants used by local society in Poncokusumo district, Malang, East Java Province, Indonesia. Asian J. Med Biol. Res. 2017, 3, 158–167.
- 65. Samuel, A.J.S.J.; Kalusalingam, A.; Chellappan, D.K.; Gopinath, R.; Radhamani, S.; Husain, H.A.; Muruganandham, V.; Promwichit, P. Ethnomedical survey of plants used by the Orang Asli in Kampung Bawong, Perak, West Malaysia. J. Ethnobiol. Ethnomed. 2010, 6, 5.
- 66. Rai, P.K.; Lalramnghinglova, H. Ethnomedicinal plant resources of Mizoram, India: Implication of traditional knowledge in health care system. Ethnobot. Leafl. 2010, 2010, 6.
- 67. Irvine, F.R. Woody Plants of Ghana; Oxford University Press: England, UK, 1961.
- 68. Phumthum, M.; Balslev, H. Thai ethnomedicinal plants used for diabetes treatment. OBM ICM 2018, 3, 1–25.
- 69. Khumbongmayum, A.; Khan, M.; Tripathi, R. Ethnomedicinal plants in the sacred groves of Manipur. Indian J. Tradit. Knowl. (IJTK) 2005, 4, 21–32.
- 70. Bhardwaj, S.; Gakhar, S.K. Ethnomedicinal plants used by the tribals of Mizoram to cure cuts & wounds. Indian J. Tradit. Knowl. 2005, 4, 75–80.
- 71. Jamal, J.A.; Ghafar, Z.A.; Husain, K. Medicinal plants used for postnatal care in Malay traditional medicine in the Peninsular Malaysia. Pharmacogn. J. 2011, 3, 15–24.
- 72. Nanda, Y.; Singson, N.; Rao, A.N. Ethnomedicinal plants of Thadou tribe of Manipur (India)-1. Pleione 2013, 7, 138–145.
- 73. Lalmuanpuii, J.; Rosangkima, G.; Lamin, H. Ethno-medicinal practices among the Mizo ethnic group in Lunglei district, Ethno-medicinal practices among the Mizo ethnic group in Lunglei district, Mizoram. Sci. Vis. 2013, 12, 24–34.
- 74. Khan, M.H.; Yadava, P.S. Antidiabetic plants used in Thoubal district of Manipur, Northeast India. Indian J. Tradit. Knowl. 2010, 9, 510–514.
- 75. Salam, S.; Jamir, N.S.; Singh, P.K. Traditional uses of medicinal plants by the Tangkhul–Naga tribe in Manipur, India. Pleione 2009, 3, 157–162.

- Mullick, J.B.; Majumdar, T.; Reddy, K.V.R.; Mukherjee, S.; Sil, S.K. Activity of the medicinal plant Parkia Javanica against multidrug-resistant Neisseria gonorrhoeae and other clinical isolates. Asian J. Pharm. Clin. Res. 2019, 12, 83–86.
- 77. Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology (5 Volume Set); CRC Press: Boca Raton, FL, USA, 2012; ISBN 142008044X.
- Das, A.; Das, M.C.; Sandhu, P.; Das, N.; Tribedi, P.; De, U.C.; Akhter, Y.; Bhattacharjee, S. Antibiofilm activity of Parkia javanica against Pseudomonas aeruginosa: A study with fruit extract. Rsc Adv. 2017, 7, 5497–5513.
- Millogo-Kone, H.; Guissou, I.P.; Nacoulma, O.; Traore, A.S. Antimicrobial effects of the stem bark extracts of Parika biglobosa (Jacq.)Benth. on Shigellae. Afr. J. Tradit. Complementary Altern. Med. 2007, 4, 392–396.
- 80. Enujiugha, V.N. The antioxidant and free radical-scavenging capacity of phenolics from African locust bean seeds (Parkia biglobosa). Adv. Food Sci. 2010, 32, 88–93.
- 81. Gernah, D.I.; Inyang, C.U.; Ezeora, N.L. Incubation and fermentation of African locust beans (Parkia biglobosa) in production of 'dawadawa'. J. Food Process. Preserv. 2007, 31, 227–239.
- El-Mahmood, A.M.; Ameh, J.M. In vitro antibacterial activity of Parkia biglobosa (Jacq.) root bark extract against some microorganisms associated with urinary tract infections. Afr. J. Biotechnol. 2007, 6, 1272–1275.
- 83. Adaramola, T.F.; Ariwaodo, J.O.; Adeniji, K.A. Distribution, phytochemistry and antioxidant properties of the genus Parkia R.br. (mimosaceae) in Nigeria. Int. J. Pharmacogn. Phytochem. Res. 2012, 4, 172–178.
- 84. Builders, M. Toxicity studies of the extracts of Parkia biglobosa Stem Bark in Rats. Br. J. Pharm. Res. 2012, 2, 1–16.
- 85. Chhikara, N.; Devi, H.R.; Jaglan, S.; Sharma, P.; Gupta, P.; Panghal, A. Bioactive compounds, food applications and health benefits of Parkia speciosa (stinky beans): A review. Agric. Food Secur. 2018, 7, 1–9.
- Ezema, B.E.; Eze, F.U.; Ezeofor, C.C. Phytochemical and antibacterial studies of eastern nigerian mistletoe (Loranthus micranthus) parasitic on Pentacletra macrophylla and Parkia biglobosa. Int. J. Pharm. Technol. Res. 2016, 9, 360–365.
- Mohan, V.R.; Janardhanan, K. Chemical and nutritional evaluation of raw seeds of the tribal pulses Parkia roxburghii G. Don. and Entada phaseoloides (L.) Merr. Int. J. Food Sci. Nutr. 1993, 44, 47–53.

- Dinda, B.; Chandra Mohanta, B.; Debnath, S.; Ghosh, B.; Arima, S.; Sato, N.; Harigaya, Y. Iridoid glucosides from leaves and stem barks of Parkia javanica. J. Asian Nat. Prod. Res. 2009, 11, 229–235.
- 89. Abioye, E.O.; Akinpelu, D.A.; Aiyegoro, O.A.; Adegboye, M.F.; Oni, M.O.; Okoh, A.I. Preliminary phytochemical screening and antibacterial properties of crude stem bark extracts and fractions of Parkia biglobosa (Jacq.). Molecules 2013, 18, 8485–8499.
- Chanu, K.V.; Geeta Devi, L.; Kumar Srivastava, S.; Telang, A.; Khangembam Victoria Chanu, C.; Thakuria, D.; Kataria, M. Phytochemical analysis and evaluation of anticancer activity of Parkia javanica seeds. Pharma Innov. J. 2018, 7, 305–311.
- Tijani, A.Y.; Okhale, S.E.; Salawu, T.A.; Onigbanjo, H.O.; Obianodo, L.A.; Akingbasote, J.A.; Salawu, O.A.; Okogun, J.I.; Kunle, F.O.; Emeje, M. Antidiarrhoeal and antibacterial properties of crude aqueous stem bark extract and fractions of Parkia biglobosa (Jacq) R. Br. Ex G. Don. Afr. J. Pharm. Pharmacol. 2009, 3, 347–353.
- Awotedu, O.L.; Ogunbamowo, P.O.; Emmanuel, I.B.; Lawal, I.O. Phytominerals and Phytochemical Studies of Azadiracthta indica, Leea guineensis and Parkia biglobosa Leaves. Int. Ann. Sci. 2018, 6, 28–34.
- Payinminnu, O.O.; Adeniyi, O.O.; Alabi, O.Y.; Omobusuyi, D.O. Potentials of Aqueous Extract of Pod Husk Parkia biglobosa (Jacq.) Benth as a Biopesticide in Okra (Abelmoschus esculentus (L.) Moench) Production. J. Agric. Ecol. Res. Int. 2017, 1–12.
- Sani, U.M. Phytochemical screening and antifeedant activity of the seed extracts of Parkia biglobosa against cowpea vean (Vigna unguiculata) storage pest (Callosobruchus maculatus). Int. J. Innov. Sci. Eng. Technol. 2014, 3, 15991–15995.
- 95. Soetan, K.O.; Lasisi, O.T.; Agboluaje, A.K. Comparative assessment of in-vitro anthelmintic effects of the aqueous extracts of the seeds and leaves of the African locust bean (Parkia biglobosa) on bovine nematode eggs. J. Cell Anim. Biol. 2011, 5, 109–112.
- Iyamu, M.I.; Ekozien, M.I.; Omoigberale, M.N.O. Phytochemical screening and antibacterial activity of the stem back of African Locust bean plant (Parkia Filicoidea Welw.). Glob. J. Biol. Agric. Health Sci. 2014, 3, 36–43.
- Salam, J.S.; Salam, P.; Potshangbam, K.S.; Kumar, D.B. Effect of processing methods on secondary metabolites and enzyme inhibitors in different developmental stages of Parkia roxburghii G. Don pods. Am. J. Food Technol. 2014, 9, 89–96.
- Costa, B.A.; de Oliveira, J.M.; Sales, P.A.; Lira, S.R.D.S.; Silva, S.M.D.S.; Costa, L.M.; Muratori, M.; Costa, A.P. Systemic and reproductive toxicity induced by Parkia platycephala ethanolic extract in female Wistar rats. Braz. J. Pharmacogn. 2013, 23, 920–926.

- 99. SáSantos, M.M.; da Silva, F.M.P.; da Silva, J.F.M.; Pimenta, R.S. Phytochemistry and antibacterial activity of aqueous and hydroalcoholic extracts of three medicinal plants against food pathogens. Acta Sci. Biol. Sci. 2018, 40, 1–6.
- 100. Egamberdieva, D.; Ovidi, E.; Tiezzi, A.; Craker, L. Phytochemical and Pharmacological Properties of Medicinal Plants from Uzbekistan: A Review. J. Med. Act. Plants 2016, 5, 59–75.
- 101. Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem. Phytochem. 2013, 1, 168–182.
- 102. Tariq, A.L.; Reyaz, A.L. Significances and importance of phytochemical present in Terminalia chebula. Int. J. Drug Dev. Res. 2013, 5, 256–262.
- 103. Wadood, A.; Ghufran, M.; Jamal, S.B.; Naeem, M.; Khan, A.; Ghaffar, R. Phytochemical analysis of medicinal plants occurring in local area of Mardan. Biochem. Anal. Biochem. 2013, 2.
- 104. Ahmad, N.I.; Rahman, S.A.; Leong, Y.H.; Azizul, N.H. A review on the phytochemicals of Parkia speciosa, stinky beans as potential phytomedicine. J. Food Sci. Nutr. Res. 2019, 2, 151–173.
- 105. Sikolia, S.F.; Omondi, S. Phytochemical Analysis of Some Selected Plants and Families in the University Botanic Garden of Maseno, Kenya. IOSR J. Pharm. Biol. Sci. 2017, 12, 31–38.
- 106. Tala, V.R.S.; Da Silva, V.C.; Rodrigues, C.M.; Nkengfack, A.E.; Dos Santos, L.C.; Vilegas, W. Characterization of proanthocyanidins from Parkia biglobosa (Jacq.) G. Don. (Fabaceae) by flow injection analysis—electrospray ionization ion trap tandem mass spectrometry and liquid chromatography/electrospray ionization mass spectrometry. Molecules 2013, 18, 2803–2820.
- 107. Ko, H.J.; Ang, L.H.; Ng, L.T. Antioxidant activities and polyphenolic constituents of bitter bean Parkia speciosa. Int. J. Food Prop. 2014, 17, 1977–1986.
- 108. Loukrakpam, B.; Rajendran, A.; Chyne, D.A.L.; Longvah, T. 12th IFDC 2017 Special Issue— Nutrient and phytonutrient profiles of some indigenous vegetables of Manipur, Northeast India. J. Food Compos. Anal. 2019, 79, 12–22.
- 109. Mohammad, M.; Garba, M.A.; Haruna, A.; Jimoh, A.A. Characterization of naringenin from the fruit pulp extract of Parkia biglobosa (FABACEAE). Fuw Trends Sci. Technol. J. 2018, 4, 918–920.
- 110. Dinda, B.; Mohanta, B.C.; Ghosh, P.; Sato, N.; Harigaya, Y. ChemInform Abstract: Chemical Constituents of Parkia javanica, Alocasia indica and Premna latifolia. ChemInform 2011, 42.
- 111. Tringali, C.; Spatafora, C.; Longo, O.D. Bioactive constituents of the bark of Parkia biglobosa. Fitoterapia 2000, 71, 118–125.
- 112. Kamisah, Y.; Zuhair, J.S.F.; Juliana, A.H.; Jaarin, K. Parkia speciosa empty pod prevents hypertension and cardiac damage in rats given N(G)-nitro-L-arginine methyl ester. Biomed. Pharmacother. 2017, 96, 291–298.

- 113. Adewoye, R.O.; Ajayi, O.O. Flavonols, flavones and tannins of Parkia clapperoniana. J. Am. Leather Chem. Assoc. (USA) 1988, 83, 153–156.
- 114. Adewoye, R.O.; Ajayi, O.O. Anthocyanidins of Parkia clappertoniana. J. Soc. Leather Technol. Chem. 1989, 73, 120–121.
- 115. Lemmich, E.; Adewunmi, C.O.; Furu, P.; Kristensen, A.; Larsen, L.; Olsen, C.E. 5-Deoxyflavones from Parkia clappertoniana. Phytochemistry 1996, 42, 1011–1013.
- 116. Ouoba, L.I.I.; Diawara, B.; Annan, N.T.; Poll, L.; Jakobsen, M. Volatile compounds of Soumbala, a fermented African locust bean (Parkia biglobosa) food condiment. J. Appl. Microbiol. 2005, 99, 1413–1421.
- 117. Mohd Azizi, C.Y.; Salman, Z.; Nik Norulain, N.; Mohd Omar, A. Extraction and identification of compounds from Parkia Speciosa seeds by supercritical carbon dioxide. J. Chem. Nat. Resour. Eng. 2008, 2, 153–163.
- 118. Bitchi, M.B.; Magid, A.A.; Yao-Kouassi, P.A.; Kabran, F.A.; Harakat, D.; Martinez, A.; Morjani, H.; Tonzibo, F.Z.; Voutquenne-Nazabadioko, L. Triterpene saponins from the roots of Parkia bicolor A. Chev. Fitoterapia 2019, 137, 104264.
- 119. Rahman, N.N.N.A.; Zhari, S.; Sarker, M.Z.I.; Ferdosh, S.; Yunus, M.A.C.; Kadir, M.O.A. Profile of Parkia speciosa hassk metabolites extracted with SFE using FTIR-PCA method. J. Chin. Chem. Soc. 2012, 59, 507–514.
- 120. Jamaluddin, F.; Mohamed, S.; Lajis, M.N. Hypoglycaemic effect of Parkia speciosa seeds due to the synergistic action of β-sitosterol and stigmasterol. Food Chem. 1994, 49, 339–345.
- 121. Akintayo, E.T. Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour. Technol. 2004, 92, 307–310.
- 122. Olatunya, A.M.; Omojola, A.; Akinpelu, K.; Akintayo, E.T. Vitamin E, Phospholipid, and Phytosterol Contents of Parkia biglobosa and Citrullus colocynthis Seeds and Their Potential Applications to Human Health. Prev. Nutr. Food Sci. 2019, 24, 338–343.
- 123. Jamaluddin, F.; Mohameda, S.; Lajis, M.N. Hypoglycaemic effect of Stigmast-4-en-3-one, from Parkia speciosa empty pods. Food Chem. 1995, 54, 9–13.
- 124. Salman, Z.; Mohd Azizi, C.; Nik Norulaini, N.; Mohd Omar, A. Gas chromatography/time-of-flight mass spectrometry for identification of compounds from Parkia speciosa seeds extracted by supercritical carbon dioxide. In Proceedings of the First International Conference on Natural Resources Engineering & Technology, Putrajaya, Malaysia, 24–25 July 2006; pp. 112–120.
- 125. Frérot, E.; Velluz, A.; Bagnoud, A.; Delort, E. Analysis of the volatile constituents of cooked petai beans (Parkia speciosa) using high-resolution GC/ToF–MS. Flavour Fragr. J. 2008, 23, 434–440.

- 126. Gmelin, R.; Susilo, R.; Fenwick, G.R. Cyclic polysulphides from Parkia speciosa. Phytochemistry 1981, 20, 2521–2523.
- 127. Miyazawa, M.; Osman, F. Headspace constituents of Parkia speciosa seeds. Nat. Prod. Lett. 2001, 15, 171–176.
- 128. Tocmo, R.; Liang, D.; Wang, C.; Poh, J.; Huang, D. Organosulfide profile and hydrogen sulfidereleasing capacity of stinky bean (Parkia speciosa) oil: Effects of pH and extraction methods. Food Chem. 2016, 190, 1123–1129.
- 129. Adeyeye, E.I. The effect of fermentation on the dietary quality of lipids from African locust bean (Parkia biglobosa) seeds. Elixir Food Sci. 2013, 58, 14912–14922.
- Olatunya, A.M.; Akintayo, C.O.; Akintayo, E.T. Determination of qualitative and quantitative fatty acid composition of Parkia biglobbossa seed oil using two different analytical techniques. Int. J. Adv. Res. 2015, 3, 463–473.
- Bukar, A.; Uba, A.; Oyeyi, T.I. Phytochemical analysis and antimicrobial activity of Parkia biglobosa (Jacq.) Benth. extracts againt some food--borne microrganisms. Adv. Environ. Biol. 2010, 74–80.
- 132. Musa, N.; Wei, L.S.; Seng, C.T.; Wee, W.; Leong, L.K. Potential of Edible Plants as Remedies of Systemic Bacterial Disease Infection in Cultured Fish. Glob. J. Pharmacol. 2008, 2, 31–36.
- 133. Hasim, H.; Faridah, D.N. Antibacterial activity of Parkia speciosa Hassk. peel to Escherichia coli and Staphylococcus aureus bacteria. J. Chem. Pharm. Res. 2015, 7, 239–243.
- 134. Fatimah, I. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res. 2016, 7, 961–969.
- 135. Kawamura, F.; Ramle, S.F.M.; Sulaiman, O.; Hashim, R.; Ohara, S. Antioxidant and antifungal activities of extracts from 15 selected hardwood species of Malaysian timber. Eur. J. Wood Wood Prod. 2011, 69, 207–212.
- 136. Uyub, A.M.; Nwachukwu, I.N.; Azlan, A.A.; Fariza, S.S. In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on some pathogenic bacteria. Ethnobot. Res. Appl. 2010, 8, 95–106.
- 137. Sakunpak, A.; Panichayupakaranant, P. Antibacterial activity of Thai edible plants against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum antibacterial polyisoprenylated benzophenone, chamuangone. Food Chem. 2012, 130, 826–831.
- 138. Sil, S.K.; Saha, S.; Karmakar, P. Reactive oxygen species as possible mediator of antibacterial activity of Parkia javanica, against bacterial species predominantly found in chronic wound. J. Drug Deliv. Ther. 2018, 8, 43–47.

- 139. Rupanjali, S.; Basu, J.M.; Syamal, R.; Biswanath, D.; Sil, S.K. In vitro activity of Parkia javanica extract against Leishmania donovani parasite. J. Appl. Biosci. 2010, 36, 85–89.
- 140. Paul, B.; Bhuyan, B.; Purkayastha, D.D.; Dhar, S.S. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J. Photochem. Photobiol. B Biol. 2016, 154, 1–7.
- 141. Devi, T.P.; Shakuntala, I.; Devi, G.; Nonglait, K.K.L.; Singha, L.B.; Pattanayak, A.; Rahman, H. Antibacterial, nematicidal and nutritional properties of different parts of tree bean, Parkia roxburghii G. Don. Asian J. Microbiol. Biotechnol. Environ. Sci 2007, 9, 621–626.
- 142. Patel, J.R.; Gohil, T.G. Antibacterial efficacy of methanolic leaf extracts of some trees against some common pathogenic bacteria. J. Appl. Sci. Comput. 2018, 5, 404–408.
- Favacho, A.R.M.; Cintra, E.A.; Coelho, L.C.B.B.; Linhares, M.I.S. In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biologicals 2007, 35, 189–194.
- 144. Jamaluddin, F.; Mohameda, S. Hypoglycemic effect of extracts of petai papan (Parkia speciosa, Hassk). Agric. Sci. 1993, 16, 161.
- 145. Fitria, F.; Annisa, A.; Nikita, S.; Ranna, C. Alpha glukosidase inhibitory test and total phenolic content of ethanol extract of Parkia speciosa plant. Sci. Technol. Indones. 2019, 4, 1.
- 146. Ramu, R.; Shirahatti, P.S.; Nayakavadi, S.; Vadivelan, R.; Zameer, F.; Dhananjaya, B.L.; Nagendra Prasad, M.N. The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food Funct. 2016, 7, 3999–4011.
- 147. Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Antidiabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food Nutr. Res. 2017, 61.
- 148. Ogunyinka, B.I.; Oyinloye, B.E.; Osunsanmi, F.O.; Opoku, A.R.; Kappo, A.P. Modulatory influence of Parkia biglobosa protein isolate on testosterone and biomarkers of oxidative stress in brain and testes of streptozotocin-induced diabetic male rats Bolajoko. Int. J. Physiol. Pathophysiol. Pharm. 2016, 8, 78–86.
- 149. Patra, K.; Jana, S.; Sarkar, A.; Karmakar, S.; Jana, J.; Gupta, M.; Mukherjee, G.; De, U.C.; Mandal, D.P.; Bhattacharjee, S. Parkia javanica extract induces apoptosis in S-180 cells via the intrinsic pathway of apoptosis. Nutr. Cancer 2016, 68, 689–707.
- 150. Kaur, N.; Singh, J.; Kamboj, S.; Agrewala, J.; Kaur, M. Two Novel Lectins from Parkia biglandulosa and Parkia roxburghii: Isolation, Physicochemical Characterization, Mitogenicity and Anti- Proliferative Activity. Protein Pept. Lett. 2005, 12, 589–595.

- 151. Aisha, A.F.A.; Abu-Salah, K.M.; Darwis, Y.; Majid, A.M.S.A. Screening of antiangiogenic activity of some tropical plants by rat aorta ring assay. Int. J. Pharmacol. 2009, 5, 370–376.
- 152. Aisha, A.F.A.; Abu-Salah, K.M.; Alrokayan, S.A.; Ismail, Z.; Abdul Majid, A.M.S. Evaluation of antiangiogenic and antoxidant properties of Parkia speciosa Hassk extracts. Pak. J. Pharm. Sci. 2012, 25, 7–14.
- 153. Fadeyi, S.A.; Fadeyi, O.O.; Adejumo, A.A.; Okoro, C.; Myles, E.L. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complementary Altern. Med. 2013, 13, 79.
- 154. Khalid, N.M.; Babji, A.S. Antioxidative and antihypertensive activities of selected Malaysian ulam (salad), vegetables and herbs. J. Food Res. 2018, 7, 27–37.
- 155. Siow, H.L.; Gan, C.Y. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Food Chem. 2013, 141, 3435–3442.
- 156. Zaini, N.; Mustaffa, F. Review: Parkia speciosa as Valuable, Miracle of Nature. Asian J. Med. Health 2017, 2, 1–9.
- 157. Kassi, Y.; Aka, K.J.; Abo, K.J.C.; Mea, A.; Bi, S.A.N.; Ehile, E.E. Effet antihypertensif d'un extrait aqueux d'écorce de tronc de Parkia biglobosa (mimosaceae) sur la pression artérielle de lapin. Sci. Nat. 2008, 5, 133–143.
- 158. Ouédraogoa, S.; Somé, N.; Ouattara, S.; Kini, F.B.; Traore, A.; Bucher, B.; Guissou, I.P. Acute toxicity and vascular properties of seed of Parkia biglobosa (JACQ) R. Br Gift (Mimosaceae) on rat aorta. Afr. J. Tradit. Complementary Altern. Med. 2012, 9, 260–265.
- 159. Ognatan, K.; Adi, K.; Lamboni, C.; Damorou, J.M.; Aklikokou, K.A.; Gbeassor, M.; Guilland, J.C. Effect of dietary intake of fermented seeds of Parkia biglobosa (Jacq) Benth (African locust bean) on hypertension in bogou and goumou-kope areas of togo. Trop. J. Pharm. Res. 2011, 10, 603– 609.
- 160. Adebayo, O.L.; Marzuk, S.; Mumuni, S.I. An in vivo assessment of Anti-diarrheal activity of solvent extracts of leaf and stem bark of Ghanian Parkia biglobosa against castor oil induced diarrhea in albino rats. Int. J. Bioassays 2014, 310, 3358–3362.
- 161. Owolabi, O.J.; Ukoima, G.S.; Inninh, S.O.; Otokiti, I.O. The anti-diarrhoeal activity of the aqueous stem bark extract of Parkia filicoidea (Fabaceae). J. Med. Biomed. Res. 2016, 15, 12–20.
- 162. Al Batran, R.; Al-Bayaty, F.; Al-Obaidi, M.M.J.; Abdualkader, A.M.; Hadi, H.A.; Ali, H.M.; Abdulla, M. A In vivo antioxidant and antiulcer activity of Parkia speciosa ethanolic leaf extract against ethanol-induced gastric ulcer in rats. PLoS ONE 2013, 8, e64751.
- 163. Maria, M.S.; Devarakonda, S.; Kumar, A.T.V.; Balakrishnan, N. Anti-ulcer activity of ethanol extract of Parkia speciosa against indomethacin induced peptic ulcer in albino rats. Int. J. Pharm. Sci. Res. 2015, 6, 895–902.

- 164. Fernandes, H.B.; Silva, F.V.; B Passos, F.F.; S Bezerra, R.D.; Chaves, M.H.; Oliveira, F.A.; Meneses Oliveira, R.C. Gastroprotective effect of the ethanolic extract of Parkia platycephala benth. Leaves against acute gastric lesion models in rodents. Biol. Res. 2010, 43, 451–457.
- 165. Ijarotimi, O.S.; Keshinro, O.O. Protein quality, hematological properties and nutritional status of albino rats fed complementary foods with fermented popcorn, African locust bean, and bambara groundnut flour blends. Nutr. Res. Pract. 2012, 6, 381–388.
- 166. Nursucihta, S.; Thai'in, H.A.; Putri, D.M.; Utami, D.N.; Ghani, A.P. Antianemia activity of parkia speciosa hassk seed ethanolic extract. Maj. Obat Tradis. 2014, 19, 49–54.
- 167. Shete, S.V.; Mundada, S.J.; Dhande, S. Comparative effect of crude extract of Parkia biglandulosa and Its isolate on regenerative angiogenesis In adult Zebrafish. Indian Drug 2017, 54, 51–57.
- 168. Ajibola, M.; Olugbemi, O.; Joseph, D.; Denen, A. Hepatoprotective effect of Parkia biglobosa stem bark methanolic extract on paracetamol induced liver damage in wistar rats. Am. J. Biomed. Life Sci 2013, 1, 75–78.
- 169. Coriolano, M.C.; de Melo, C.M.L.; de Oliveira Silva, F.; Schirato, G.V.; Porto, C.S.; dos Santos, P.J.P.; dos Santos Correia, M.T.; Porto, A.L.F.; dos Anjos Carneiro-Leão, A.M.; Coelho, L.C.B.B. Parkia pendula seed lectin: Potential use to treat cutaneous wounds in healthy and immunocompromised mice. Appl. Biochem. Biotechnol. 2014, 172, 2682–2693.
- 170. Gui, J.S.; Jalil, J.; Jubri, Z.; Kamisah, Y. Parkia speciosa empty pod extract exerts antiinflammatory properties by modulating NFκB and MAPK pathways in cardiomyocytes exposed to tumor necrosis factor-α. Cytotechnology 2019, 71, 79–89.
- 171. Mustafa, N.H.; Ugusman, A.; Jalil, J.; Kamisah, Y. Anti-inflammatory property of Parkia speciosa empty pod extract in human umbilical vein endothelial cells. J. Appl. Pharm. Sci. 2018, 8, 152– 158.
- Nwaehujor, C.O.; Ezeigbo, I.I.; Udeh, N.E.; Ezeja, M.I.; Asuzu, I.U. Anti-inflammatory anti-oxidant Activities of the methanolic extracts of the stalk of Parkia biglobosa. Hygein J. Med. 2010, 3, 34– 40.
- 173. Silva, H.C.; Bari, A.U.; Rocha, B.A.M.; Nascimento, K.S.; Ponte, E.L.; Pires, A.F.; Delatorre, P.; Teixeira, E.H.; Debray, H.; Assreuy, A.M.S. Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and antiinflammatory properties. J. Mol. Recognit. 2013, 26, 470–478.
- 174. Ukwuani, A.; Ahmad, H. In vitro anti-inflammatory activity of Parkia biglobosa fruit bark extract. Int. J. Life Sci. Sci. Res. 2015, 1, 8–11.
- 175. Bari, A.U.; Santiago, M.Q.; Osterne, V.J.S.; Pinto-Junior, V.R.; Pereira, L.P.; Silva-Filho, J.C.; Debray, H.; Rocha, B.A.M.; Delatorre, P.; Teixeira, C.S.; et al. Lectins from Parkia biglobosa and

Parkia platycephala: A comparative study of structure and biological effects. Int. J. Biol. Macromol. 2016, 92, 194–201.

- 176. Ruthiran, P.; Selvaraj, C.I. Phytochemical screening and in vitro antioxidant activity of Parkia timoriana (DC.) Merr. Res. J. Biotechnol. 2017, 12, 12.
- 177. Chanu, K.V.; Ali, M.A.; Kataria, M. Antioxidant activities of two medicinal vegetables: Parkia javanica and Phlogacanthus thyrsiflorus. Int. J. Pharm. Pharm. Sci. 2012, 4, 102–106.
- 178. Seal, T. Antioxidant activity of some wild edible plants of Meghalaya state of India: A comparison using two solvent extraction systems. Int. J. Nutr. Metab. 2012, 4, 51–56.
- 179. Badu, M.; Mensah, J.K.; Boadi, N.O. Antioxidant activity of methanol and ethanol/water extracts of Tetrapleura tetraptera and Parkia biglobosa. Int. J. Pharma Bio Sci. 2012, 3, 312–321.
- 180. Balaji, K.; Nedumaran, S.A.; Devi, T.; Sikarwar, M.S.; Fuloria, S. Phytochemical analysis and in vitro antioxidant activity of Parkia speciosa. Int. J. Green Pharm. 2015, 9, S50–S54.
- 181. Ghasemzadeh, A.; Jaafar, H.Z.E.; Bukhori, M.F.M.; Rahmat, M.H.; Rahmat, A. Assessment and comparison of phytochemical constituents and biological activities of bitter bean (Parkia speciosa Hassk.) collected from different locations in Malaysia. Chem. Cent. J. 2018, 12, 1–9.
- 182. Tunsaringkarn, T.; Soogarun, S.; Rungsiyothin, A.; Palasuwan, A. Inhibitory activity of Heinz body induction in vitro antioxidant model and tannin concentration of Thai mimosaceous plant extracts. J. Med. Plants Res. 2012, 6, 4096–4101.
- 183. Ramli, S.; Bunrathep, S.; Tansaringkarn, T.; Ruangrungsi, N. Screening for free radical scavenging activity from ethanolic extract of Mimosaceous plants Endemic to Thailand. J. Health Res. 2008, 22, 55–59.
- 184. Oboh, G.; Alabi, K.B.; Akindahunsi, A.A. Fermentation changes the nutritive value, polyphenol distribution, and antioxidant properties of Parkia biglobosa seeds (African locust beans). Food Biotechnol. 2008, 22, 363–376.
- 185. Komolafe, K.; Olaleye, T.M.; Omotuyi, O.I.; Boligon, A.A.; Athayde, M.L.; Akindahunsi, A.A.; da Rocha, J.B.T. In vitro antioxidant activity and effect of Parkia biglobosa bark extract on mitochondrial redox status. Jams J. Acupunct. Meridian Stud. 2014, 7, 202–210.
- 186. Millogo-Kone, H.; Guissou, I.; Nacoulma, O.; Traore, A. Comparative study of leaf and stem bark extracts of Parkia biglobosa against enterobacteria. Afr. J. Tradit. Complementary Altern. Med. 2008, 5, 238–243.
- 187. Yahaya, U.; Abubakar, S.; Salisu, A. Antifungal activity of Parkia biglobosa extract on pathogenic strain of Candida albicans. J. Appl. Sci. 2019, 19, 235–240.
- 188. Joshua, E.; Joshua, E.; Ifeanyichukwu, I.; Chika, E.; Okoro, N.; Carissa, D.; Emmanuel, N.; Chukwuka, A. In vitro evaluation of antibacterial activity of Parkia biglobosa, Hymenocardia acida

and Zanthoxylum zanthoxyloides extracts on pathogenic Staphylococcus aureus Isolates. Int. J. Life Sci. 2016, 5, 72–77.

- Nounagnon, M.; Dah-Nouvlessounon, D.; N'tcha, C.; Nanoukon, C.; Assogba, F.; Lalèyè, F.O.A.; Baba-Moussa, L. Phytochemical composition, antimicrobial and cytotoxicity activities of Parkia biglobosa (Jacq) benth extracts from Benin. J. Pharmacogn. Phytochem. 2017, 6, 35–42.
- Millogo-Kone, H.; Lompo, M.; Kini, F.; Asimi, S.; Guissou, I.P.; Nacoulma, O. Evaluation of flavonoids and total phenolic contents of stem bark and leaves of Parkia biglobosa (Jacq.) Benth. (Mimosaceae)-free radical scavenging and antimicrobial activities. Res. J. Med Sci. 2009, 3, 70– 74.
- 191. Obajuluwa, A.F.; Onaolapo, J.A.; Oyi, A.R.; Olayinka, B.O. Susceptibility profile of methicillinresistant Staphylococcus aureus (MRSA) isolates to antibiotics and methanolic extracts of Parkia biglobosa (Jacq.) Benth. Br. J. Pharm. Res. 2013, 3, 587–596.
- 192. Dosumu, O.O.; Oluwaniyi, O.O.; Awolola, G.V.; Oyedeji, O.O. Nutritional composition and antimicrobial properties of three Nigerian condiments. Niger. Food J. 2012, 30, 43–52.
- 193. Osemwegie, O.O.; Dahunsi, S.O. In-vitro effects of aqueous and ethanolic extracts of Parkia biglobossa (Jacq.) Benth on selected microorganisms. Niger. J. Biotechnol. 2015, 11–20.
- 194. Igwo-Ezikpe, M.N.; Ogbunugafor, H.A.; Gureje, A.P.; Ezeonwumelu, I.J. Phytochemical, antioxidant and antimicrobial properties of Parkia biglobosa (African Locust Bean) pods. Bioscientist 2013, 1, 182–191.
- 195. Farias, D.F.; Souza, T.M.; Viana, M.P.; Soares, B.M.; Cunha, A.P.; Vasconcelos, I.M.; Ricardo, N.M.P.S.; Ferreira, P.M.P.; Melo, V.M.M.; Carvalho, A.F.U. Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from Brazilian semiarid region. Biomed Res. Int. 2013, 2013, 510736.
- 196. Silva, R.R.S.; Silva, C.R.; Santos, V.F.; Barbosa, C.R.S.; Muniz, D.F.; Santos, A.L.E.; Santos, M.H.C.; Rocha, B.A.M.; Batista, K.L.R.; Costa-Júnior, L.M.; et al. Parkia platycephala lectin enhances the antibiotic activity against multi-resistant bacterial strains and inhibits the development of Haemonchus contortus. Microb. Pathog. 2019, 135, 103629.
- 197. Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S.A.A.; Tripathy, M.; Paliwal, N. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys. 2019, 15, 102565.
- 198. Thongbam, P.D.; Shakuntala, I.; Fiyaz, A.R.; Moirangthem, S.S.; Pajat, J.J.; Ngachan, S.V. Tree bean (Parkia roxburghii G. Don): A complete food and ethno-medicine for North East India. Res. Bull. 2012, 12–14.
- 199. Zuhud, E.A.M.; Rahayu, W.P.; Wijaya, C.H.; Sari, P.P. Antimicrobial activity of kedawung extract (Parkia roxburghii G. Don) on food borne pathogens. J. Teknol. Dan Ind. Pangan 2001, 12, 1–5.

- 200. Shrisha, D.L.; Raveesha, K.A. Nagabhushan Bioprospecting of selected medicinal plants for antibacterial activity against some pathogenic bacteria. J. Med. Plants Res. 2011, 5, 4087–4093.
- Behuria, H.G.; Sahu, S.K. An Anti-microbial terpenoid fraction from Gymnema sylvestre induces flip-flop of fluorescent-phospholipid analogs in model membrane. Appl. Biochem. Biotechnol. 2020, 192, 1331–1345.
- 202. Tunsaringkarn, T.; Rungsiyothin, A.; Ruangrungs, N. α-glucosidase inhibitory activity of Thai mimosaceous plant extracts. J. Health Res. 2008, 22, 29–33.
- 203. Saleh, M.S.M.; Siddiqui, M.J.; Mat So'ad, S.Z.; Roheem, F.O.; Saidi-Besbes, S.; Khatib, A. Correlation of FT-IR fingerprint and α-glucosidase inhibitory activity of salak (Salacca zalacca) fruit extracts utilizing orthogonal partial least square. Molecules 2018, 23, 1434.
- 204. Ward, M.G.; Li, G.; Barbosa-Lorenzi, V.C.; Hao, M. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion. Sci. Rep. 2017, 7, 1–13.
- 205. Aiyer, P.V. Amylases and their applications. Afr. J. Biotechnol. 2005, 4, 1525–1529.
- 206. Odetola, A.A.; Akinloye, O.; Egunjobi, C.; Adekunle, W.A.; Ayoola, A.O. Possible antidiabetic and antihyperlipidaemic effect of fermented Parkia biglobosa (Jacq) ex- tract in alloxan induced diabetic rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 808–812.
- 207. Sule, O.; Godwin, J.; Abdu, A. Preliminary study of hypoglycemic effect of locust bean (Parkia biglobosa) on wistar albino rat. J. Sci. Res. Rep. 2015, 4, 467–472.
- 208. Ibrahim, M.A.; Habila, J.D.; Koorbanally, N.A.; Islam, M.S. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J. Ethnopharmacol. 2016, 183, 103–111.
- 209. Chanvitan, A.; Ubolcholket, S.; Chongsuvivatwong, V.; Geater, A. Risk factors for squamous cell carcinoma in southern Thailand. Esophageal Canver Stud. South. Thail. 1990, 81–100.
- 210. Tangkanakul, P.; Trakoontivakorn, G.; Saengprakai, J.; Auttaviboonkul, P.; Niyomwit, B.; Lowvitoon, N.; Nakahara, K. Antioxidant capacity and antimutagenicity of thermal processed Thai foods. Jpn. Agric. Res. Q. JARQ 2011, 45, 211–218.
- 211. Murakami, A.; Ohigashi, H.; Koshimizu, K. Possible anti-tumour promoting properties of traditional Thai food items and some of their active constituents. Asia Pac. J. Clin. Nutr. 1994, 3, 185–191.
- 212. Singh, R.S.; Bhari, R.; Kaur, H.P. Mushroom lectins: Current status and future perspectives. Crit. Rev. Biotechnol. 2010, 30, 99–126.
- 213. Suvachittanont, W.; Jaranchavanapet, P. Mitogenic effect of Parkia speciosa seed lectin on human lymphocytes. Planta Med. 2000, 66, 699–704.

- 214. Kamisah, Y.; Othman, F.; Qodriyah, H.M.S.; Jaarin, K. Parkia speciosa Hassk.: A potential phytomedicine. Evid. Based Complementary Altern. Med. 2013, 2013, 709028.
- 215. Auyeung, K.K.; Han, Q.-B.; Ko, J.K. Astragalus membranaceus: A review of its protection against inflammation and gastrointestinal cancers. Am. J. Chin. Med. 2016, 44, 1–22.
- 216. Kodjo, K.M.; Contesse, V.; Do Rego, J.L.; Aklikokou, K.; Titrikou, S.; Gbeassor, M.; Vaudry, H. In vitro effects of crude extracts of Parkia biglobosa (Mimosaceae), Stereospermum kunthianum (Bignoniaceae) and Biophytum petersianum (Oxalidaceae) on corticosteroid secretion in rat. J. Steroid Biochem. Mol. Biol. 2006, 100, 202–208.
- 217. Yi, Q.Y.; Li, H.B.; Qi, J.; Yu, X.J.; Huo, C.J.; Li, X.; Bai, J.; Gao, H.L.; Kou, B.; Liu, K.L.; et al. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines. Toxicol. Lett. 2016, 262, 105–113.
- 218. Galleano, M.; Pechanova, O.; G Fraga, C. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol. 2010, 11, 837–848.
- 219. Takagaki, A.; Nanjo, F. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2015, 63, 8262–8266.
- 220. Luo, D.; Xu, J.; Chen, X.; Zhu, X.; Liu, S.; Li, J.; Xu, X.; Ma, X.; Zhao, J.; Ji, X. (–)-Epigallocatechin-3-gallate (EGCG) attenuates salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Sci. Rep. 2020, 10, 1–11.
- 221. Ayo-Lawal, R.A.; Osoniyi, O.; Famurewa, A.J.; Lawal, O.A. Evaluation of antioxidant and hypolipidaemic effects of fermented Parkia biglobosa (Jacq) seeds in tyloxapol-induced hyperlipidaemic rats. Afr. J. Food Sci. 2014, 8, 225–232.
- 222. Rendu, F.; Saleun, S.; Auger, J. Parkia biglobosa seeds possess anti platelet activity. Thromb. Res. 1993, 71, 505–508.
- 223. Appeldoorn, M.M.; Venema, D.P.; Peters, T.H.F.; Koenen, M.E.; Arts, I.C.W.; Vincken, J.P.; Gruppen, H.; Keuer, J.; Hollman, P.C.H. Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro. J. Agric. Food Chem. 2009, 57, 7693–7699.
- 224. Sahoo, H.B.; Sagar, R.; Kumar, A.; Bhaiji, A.; Bhattamishra, S.K. Antidiarrhoeal investigation of Apium leptophyllum (Pers.) by modulation of Na+K+ATPase, nitrous oxide and intestinal transit in rats. Biomed. J. 2016, 39, 376–381.
- 225. Khan, T.; Ali, S.; Qayyum, R.; Hussain, I.; Wahid, F.; Shah, A.J. Intestinal and vascular smooth muscle relaxant effect of Viscum album explains its medicinal use in hyperactive gut disorders and hypertension. BMC Complementary Altern. Med. 2016, 16, 1–8.

- 226. Imtiaz, S.M.; Aleem, A.; Saqib, F.; Ormenisan, A.N.; Neculau, A.E.; Anastasiu, C.V. The potential involvement of an ATP-dependent potassium channel-opening mechanism in the smooth muscle relaxant properties of Tamarix dioica roxb. Biomolecules 2019, 9, 722.
- 227. Hamaishi, K.; Kojima, R.; Ito, M. Anti-ulcer effect of tea catechin in rats. Biol. Pharm. Bull. 2006, 29, 2206–2213.
- 228. Ito, Y.; Ichikawa, T.; Iwai, T.; Saegusa, Y.; Ikezawa, T.; Goso, Y.; Ishihara, K. Effects of tea catechins on the gastrointestinal mucosa in rats. J. Agric. Food Chem. 2008, 56, 12122–12126.
- 229. Suzuki, Y.; Ishihara, M.; Segami, T.; Ito, M. Anti-ulcer effects of antioxidants, quercetin, αtocopherol, nifedipine and tetracycline in rats. Jpn. J. Pharmacol. 1998, 78, 435–441.
- 230. De Barros, M.P.; Lemos, M.; Maistro, E.L.; Leite, M.F.; Sousa, J.P.B.; Bastos, J.K.; de Andrade,
 S.F. Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. J.
 Ethnopharmacol. 2008, 120, 372–377.
- 231. Bajpai, V.K.; Alam, B.; Ju, M.; Kwon, K.; Suk, Y. Antioxidant mechanism of polyphenol-rich Nymphaea nouchali leaf extract protecting DNA damage and attenuating oxidative stress-induced cell death via Nrf2-mediated heme-oxygenase-1 induction coupled with ERK/p38 signaling pathway. Biomed. Pharmacother. 2018, 103, 1397–1407.
- 232. Angami, T.; Bhagawati, R.; Touthang, L.; Makdoh, B.; Nirmal; Lungmuana; Bharati, K.A.; Silambarasan, R.; Ayyanar, M. Traditional uses, phytochemistry and biological activities of Parkia timoriana (DC.) Merr., an underutilized multipurpose tree bean: A review. Genet. Resour. Crop Evol. 2018, 65, 679–692.
- 233. Hopkins, H.C. Floral biology and pollination ecology of the neotropical species of Parkia. J. Ecol. 1984, 72, 1–23.
- 234. Abalaka, S.E.; Fatihu, M.Y.; Ibrahim, N.D.G.; Kazeem, H.M. Histopathologic changes in the gills and skin of adult Clarias gariepinus exposed to ethanolic extract of Parkia biglobosa pods. Basic Appl. Pathol. 2010, 3, 109–114.
- 235. Oshimagye, M.I.; Ayuba, V.O.; Annune, P.A. Toxicity of aqueous extracts of Parkia biglobosa pods on Clarias gariepinus (Burchell, 1822) Juveniles. Niger. J. Fish. Aquac. 2014, 2, 24–29.

Retrieved from https://encyclopedia.pub/entry/history/show/92446