Submitted Successfully!
Thank you for your contribution! You can also upload a video entry related to this topic through the link below: https://encyclopedia.pub/user/video_add?id=20488
Check Note
2000/2000
Ver. Summary Created by Modification Content Size Created at Operation
1 + 3009 word(s) 3009 2022-03-10 05:14:10 |
2 Adjust the reference format Meta information modification 3009 2022-03-14 04:27:36 | |
3 Adjust italics + 2 word(s) 3011 2022-03-14 04:37:35 | |
4 Adjust italics -40 word(s) 2971 2022-03-14 04:48:29 |
Role of Marine Macroalgae in Cosmeceuticals
Edit
Upload a video

The cosmetic industry uses the term ‘cosmeceutical’ to refer to a cosmetic formula that has drug-like applicative advantages. Many marine algae are rich in biologically active components that have been reported to exhibit strong benefits to the skin, mainly for photoprotection, skin whitening, moisturization, anti-aging, anti-wrinkle, antioxidants, and antimicrobial uses. 

seaweeds bioactivity cosmeceuticals skin care anti-inflammatory
Information
Contributor :
View Times: 188
Revisions: 4 times (View History)
Update Date: 14 Mar 2022
Table of Contents

    1. Introduction

    In cosmeceuticals, cosmetic products are a topical combination of cosmetic and pharmaceutical with bioactive molecules to have medicinal or drug-like applications to improve health and texture of skin [1][2]. Due to modernization and skin care attention, cosmetic companies are enlarging gradually each year worldwide. To fulfill the requirements of customers, these cosmetic companies are moving towards unbeatable exploitation of synthetic cosmetics and constituents. Due to the ineffectiveness of synthetic components, it may cumulate in skin and produce toxic effects and may cause harm to healthy skin structure. Hydroxybenzoic acid esters (parabens) reported its adverse effect to the skin as well as increase incidence of malignant melanoma and breast cancer since it is widely used in cosmetic formulations [3]. Another substance is phthalate, which is highly found in different cosmetic formulations that can cause DNA mutations and damage, as found in human male gamete [4][5]. Some of these synthetic chemical compounds can cause detrimental effects in animals such as reduction of sperm counts, changed pregnancy outcomes, congenital disabilities of male genitalia, etc. [6]. As a result, users have changed their liking and selected natural cosmetic products for usage [7]. Hence, the enlarging market for skincare formulations and constant look for an alternative natural constituents led to the production of a different types of cosmeceutical skin products [8].
    Marine macroalgae (seaweeds) are macroscopic, multicellular, eukaryotic organisms that can perform photosynthesis due to presence of Chlorophyll and some other photosynthetic pigments. They are widely distributed along the coastal line (the intertidal and sub-tidal regions) and in brackish water [9]. Based on pigment composition, they can be classified into three types. Brown alga belongs to Ochrophyta phylum (Phaeophyceae class), red alga belongs to Rhodophyta phylum, and green alga belongs to Chlorophyta phylum. Among these three types, brown algae belong to the Chromista kingdom, whereas green and red algae belong to the Plantae kingdom [9][10]. Seaweeds have a more highly diversified bioactive constituents than terrestrial organisms [11]. These bioactive compounds have a wide range of biological activities which can be used in product preparation as an ingredient [12][13]. The applications of macroalgae in cosmeceutical formulations depends on their constituents (such as polysaccharides, carbohydrate derivatives, proteins, peptides, amino acids, phenolic compounds, vitamins, minerals, fatty acids, pigments, etc.) [14][15]. Many previous findings have reported the role of seaweed based bioactive compounds which offer antitumor, antiallergic, antimicrobial, antioxidant, antiinflammation, antilipidemic activity, antiwrinkle, anti-aging, moisturizing, and photoprotection activities [5][14][16][17][18].

    2. Seaweed Derived Metabolites in Cosmetics

    For the preparation of cosmeceutical products, macroalgae-derived compounds have been noted as being of significant importance [19]. Polysaccharides have a great role in cosmetics including in moisturizers, emulsifiers, wound healing agents, and thickening agents [20]. Fernando et al. [21] have reported anti-inflammation activity of Fucoidan from Chnoospora minima (Phaeophyceae) by inhibition of Lipopolysaccharides induced nitric oxide production, inducible nitric oxide productions, Cyclooxygenase-2, and Prostaglandin E2 levels in an experimental study by targeting RAW macrophages. Likewise, Ariede et al. [22], Wang et al. [23], and Teas and Irhimeh, [24] reported beneficial activities of Fucus vesiculosus (Figure 1a) (Phaeophyceae) derived polysaccharides such as anti-aging, anti-melanogenic, anti-cancer, and antioxidant activity by stimulating collagen production, tyrosinase inhibition, decreasing melanoma growth and by preventing oxidation formation, respectively. In addition, the anti-inflammation activity of sulphated polysaccharide from Padina tetrastromatica (Phaeophyceae) by COX-2 and iNOS inhibitions in an experimental model of Paw edema in rats [25]. Moreover, Khan et al. [26] reported the anti-inflammation activity of polyunsaturated fatty acids derived from Undaria pinnatifida (Figure 1b) (Phaeophyceae) on mouse ear edema and erythema. In vitro, the antioxidant activity of methanolic extracts from Osmundaria obtusilo and Palisada flagellifera (Rhodophyta) was studied by DPPH, ABTS, metal chelating, Folin ciocalteau, and beta-carotene bleaching assays [27][28]. Phenolic compound Sargachromanol E revealed antiaging activities from Sargassum horneri (Phaeophyceae) by inhibition of matric metalloprotein expression on UVA irradiated dermal fibroblast [29].

    Phycology 02 00010 g001 550
    Figure 1. Seaweed species images: (a)—Fucus vesiculosus (P); (b)—Undaria pinnatifida (P); (c)—Schizymenia dubyi (R); (d)—Ulva linza (C); (e)—Bryopsis plumosa (C); (f)—Laminaria digitata (P); (g)—Palmaria palmata (R); (h)—Himanthalia elongata (P); (i)—Porphyra umbilicalis (R); (j)—Jania rubens (R); (k)—Gracilaria gracilis (R); (l)—Ceramium virgatum (R); (m)—Kappaphycus alvarezii (R); (n)—Ulva lactuca (C); (o)—Ascophyllum nodosum (P); (p)—Eucheuma denticulatum (R); C—Chlorophyta; R—Rhodophyta; P—Phaeophyceae; Scale = 1 cm.

    3. Polysaccharides

    Marine macroalgae derived polysaccharides are well known for their biological benefits. The presence of polysaccharides (ulvan, fucoidan, alginate, laminarin, carrageenan, sulphated polysaccharides, agar, and agarose) in macroalgae and noted their cosmeceutical benefits. Other examples of macroalgae derived polysaccharides and their cosmetic benefits are presented in Table 1.

    Table 1. Application of macroalgae derived polysaccharides in skin cosmetics.
    No. Name of Macroalgae Polysaccharides Cosmetic Benefits References
    1 Ulva lactuca
    (Figure 1n) (C)
    SP (Ulvan) Antioxidant, Moisturizer, Photoprotective [30]
      Neopyropia yezoensis (R) Porphyran Antiinflammation [31][32]
    2 Porphyridium sp.* (R),
    Costaria costata (P), Ulva lactuca (Figure 1n) (C)
    Sulphated polysaccharides Antioxidant,
    Anti-inflammatory,
    Antiaging
    [33]
    3 Fucus vesiculosus (Figure 1a) Fucoidans Antiaging, Antiwrinkle [34]
    4 Ascophyllum nododum
    (Figure 1o),
    Chnoospora minima,
    Sargassum fusiforme,
    Saccharina japonica, Sargassum polycystum,
    S. vachellianum,
    S. hemiphyllum (P)
    Fucoidans Photoprotection, Anti photoaging
    Anti-inflammatory,
    Anti-elastase, Anti-collagenase, Skin whitening
    [35][36][37][38]
    5 Fucus vesiculosus
    (Figure 1a) (P)
    Fucoidan Anticoagulant Antioxidant, Enhancer of Skin fibroblast formation [39]
    6 Neoporphyra haitanensis (R) Porphyran Antioxidant [40][41]
    7 Saccharina longicruris (P) Laminaran Anti-inflammation, Antioxidant, Reconstruction of dermis [42][43]
    8 Saccharina longicruris (P) Galactofucans Enhance fibroblast formation, Increase synthesis of matrix metalloproteinase (MMP) complex and collagen-1 [44]
    9 Eucheuma denticulatum
    (Figure 1p) (R)
    Carrageenan Antioxidant, photoprotection [45]
    10 Gelidium sp. (R) Agar Thickener [46]
    11 Ascophyllum sp.,
    Fucus sp.,
    Sargassum sp., Undaria sp. (P)
    Laminaran Anticellulite [47]
    12 Saccharina cichorioides (P) Fucoidan Anti-atopic dermatitis [48]
    13 Corallina officinalis (R) Sulphated polysaccharides Antioxidant [49]
    14 Ulva australis (C) Ulvan Antiaging [50][51]
    15 Acanthophora muscoides (R) Sulphated polysaccharides-Carrageenan Anticoagulant, Antinociceptive, antiinflammation, Gel agents [52][53][54]
    17 Chondrus crispus (R) Carrageenan Gel and Thickening agent, Skin moisturizer [55]
    18 Ulva rigida,
    U. pseudorotundata (C)
    Sulphated polysaccharides Antioxidant, Chelators, Gel agents, Moisturizer [56]
    19 Ascophyllum nodosum
    (Figure 1o) (P)
    Fucoidan Anti-inflammation, Antiviral, Antiaging, Anti elastase, Photoprotective, Tyrosinase inhibition, Anticellulite [57]
    20 Gracilaria sp. (R) Agar Thickener [58]
    21 Padina boergesenii (P) Sulphated polysaccharides Formation of collagen [59]
    22 Macrocystis sp., Lessonia sp., Laminaria sp. (P) Alginate Gelling and Stabilizing agent, Moisturizer, Chelator [60][61]
    24 Kjellmaniella crassifolia Fucoidan Antiaging, Antiwrinkle [62]
    25 Brown algae (P) Alginate Thickening agent
    Gelling agent
    [63]
    27 Sargassum
    vachellianum (P)
    Polysaccharides Skin moisturizer and protectors [64]
    28 Fucus vesiculosus (Figure 1a),
    Laminaria digitata (Figure 1f),
    Undaria pinnatifida (Figure 1b) (P)
    Fucoidan Antioxidant, Antiaging,
    Anticoagulant, Increase skin fibroblast formulation
    [65][66]
    29 Ascophyllum nodosum
    (Figure 1o) (P)
    Fucoidan Anti-elastase, gelatinase A inhibition, Inhibition of interleukin-1 beta in fibroblast cells [67]
    30 Ecklonia cava (P) Phlorotannins Photoprotectors against UV-B [68][69]
    31 Neoporphyra haitanensis,
    Gracilaria chouae,
    G. blodgetti (R)
    Agar Antioxidant,
    Thickeners
    Antitumor,
    Radiation protector,
    Antiaging
    [70][71]
    32 Turbinaria conoides (P) Laminarin, Alginate, Fucoidan Antioxidant [72]
    SP, Sulphated Polysaccharides; C, Chlorophyta; R, Rhodophyta; P, Phaeophyceae; * Microalgae.

    4. Amino Acids

    Protein is considered a macromolecule and polymer of amino acids. Pereira [67] reported the role of amino acids as a natural moisturizing factor that prevents water loss in the skin. Marine macroalgae are a satisfactory resource of various amino acids, such as glycine, alanine, valine, leucine, proline, arginine, serine, histidine, tyrosine, and some other mycosporine amino acids (MAAs). Marine macroalgae derived peptides and amino acids and its skin cosmetic benefits are illustrated in Table 2. In cosmeceutical products, amino acids usually function as a hydrating agent as a natural moisturizing factor in human skin [73].
    Table 2. Applications of macroalgae derived peptides and amino acids in skin cosmetics.
    No. Name of Macroalgae Compounds Cosmetic Benefits References
    1 Scytosiphon lomentaria (P) Amino acids Antioxidant, Radical scavengers, Chelators [74][75][76]
    2 Gracilaria vermiculophylla (R) Porphyra-334, Palythine, Asterina-330, Shinorine Antioxidant, UV protector [77]
    3 Ulva lactuca (Figure 1n) (C),
    Asparagopsis armata (R)
    MAAs, Amino acids Antiaging, Anti wrinkles, Improves collagen formation [78]
    4 Pelvetia canaliculata
    (P)
    Amino acids Antioxidant, Collagen formation, Proteoglycan’s synthesis [79]
    5 Gracilaria chilensis, Pyropia plicata, Champia novae-zelandiae (R) MAAs Anti UV, Antioxidant [80]
    6 Ulva lactuca
    (Figure 1n) (C)
    Arginine, Aspartic acid, Glycine Enhance collagen and elastin synthesis [80]
    7 Porphyra umbilicalis
    (Figure 1i) (R)
    MAAs, (2:1 ratio of Porphyra-334 and Shinorine) Antiaging [81]
    8 Palmaria palmata
    (Figure 1g),
    Catenella caespitosa (R)
    MAAs UV and UV-A protection [82]
    9 Porphyra sp.,
    Catenella caespitosa (R), Padina crassa, Desmarestia aculeata (P)
    MAAs such as Aminocyclohexenone-type, Aminocyclohexene imine-type Photoprotection, Antiaging, Anti-inflammatory, Antioxidant [83]
    10 Curdiea racovitzae, Iridaea cordata (R) Palythine, asterina-330 Antioxidant, Anti-UV, Antiaging [84]
    11 Porphyra sp. (R) Protein and hydrolysates Moisture retention capacity and viscosifying agent [85][86]
    12 Palmaria sp., Porphyra sp. (R) High amounts of Glycine and Arginine Natural moisturizing factor [87]
    13 Chondrus crispus, Mastocarpus stellatus, Palmaria palmata (Figure 1g) (R) Palythine, Usujirene, Porphyra-334, Shinorine, Asterina, palythinol Antioxidant, Anti-proliferation [88]
    14 Pelvetia canaliculata
    (P)
    Amino acids Antioxidant, Collagen synthesis, Proteoglycan synthesis stimulation [89]
    15 Laminaria digitata (Figure 1f) (P) Proteins Lipolytic [90]
    16 Neopyropia yezoensis (R) Peptide PPy1 Anti-inflammatory [91]
    17 Palmaria palmata
    (Figure 1g) (R)
    MAAs UV protector [92]
    18 Sargassum polycystum (P) Amino acids and amines Anti-melanogenic or skin whitening effect [93][94][95]
    19 Porphyra umbilicalis
    (Figure 1i) (R)
    Porphyra-334, Shinorine Moisturization, Skin protector, Antiwrinkle, Protect against roughness [96]
    21 Porphyra yezoensis f. coreana (R) Peptides, PYP1-5, porphyra-334 Enhance Elastin and collagen formation, reduce MMP expression [96]
    22 Palmaria palmata (Figure 1g), Porphyra umbilicalis
    (Figure 1i) (R)
    MAAs Antiaging, Collagenase inhibition [97][98]
    C, Chlorophyta; R, Rhodophyta; P, Phaeophyceae.

    5. Pigments

    Marine macroalgae have a broad diversity of photosynthetic pigments that capture light for the photosynthesis process. Chlorophyta (green algae) contain chlorophyll a, chlorophyll b, and carotenoids; Rhodophyta (red algae) contain chlorophyll a, phycobilin (phycocyanin, phycoerythrin), and carotenoids (carotene, lutein, zeaxanthin), and Phaeophyceae (brown algae) contain chlorophyll a, chlorophyll c, fucoxanthin, and different carotenoid pigments. Different macroalgae-derived pigments and cosmetic applications are reported in Table 3. These pigments provide a shield to the skin cells against harmful UV radiations [99].
    Table 3. Applications of macroalgae derived pigments in skin cosmetics.
    No. Name of Macroalgae Pigment Cosmetic Benefits References
    1 Sargassum spp. Carotenoids, Astaxanthin, Beta-carotene, Fucoxanthin Anticellulite, Antiaging, Antiphotoaging, antioxidant, antiviral [100]
    2 Saccharina japonica (P) Fucoxanthin Inhibition of tyrosinase and Melanogenesis in UVB irradiated [101]
    3 Cladosiphon okamuranus (P) Fucoxanthin Antioxidant, DPPH inhibition [102]
    4 Neopyropia yezoensis® Phycoerythrin Antioxidant, Anticancer, Antiinflammatory [103]
    5 Gracilaria gracilis, Porpyridium sp. (R) Phycobiliprotein pigment such as R-phycoerythrin, Phycocyanin, Allophycocyanins Antioxidant, Skin whitening activity by Antimelanogenic activity [104]
    6 Cladophora glomera®(C) Chlorophyll a, Chlorophyll b, Chlorophyll c, Chlorophyll d Antibacterial, Antioxidant, Colorants, Deodorizer [105][106][107]
    7 Portieri®p. (R) Phycobiliproteins, Phycoerythrin, Phycocyanin Antioxidants, anti-inflammatory, Colorants, Radical scavenger [107]
    8 Cladophora glomerata (C) Chlorophyll Tissue growth stimulators [108]
    9 Neopyropia y®ensis (R) Porphyran Antioxidant, Anti-inflammatory [109]
    10 U® lactuca (C) Carotenoids such as astaxanthin, beta-carotene, fucoxanthin, lutein Anti-inflammatory, Antiaging, Tyrosinase inhibition, Antioxidants, Photoprotective [106]
    11 Rhodophyta (R) Lutein Skin whitening [110]
    12 Paraglossum lancifolium (R) Lipid soluble pigments such as Xanthophyll and Carotenoids
    Beta-carotene, Lutein
    Antioxidant, Anti-inflammatory, Antiphotoaging, Photoprotection, Anti-photoaging [111]
    13 Undaria pinnatifida (P) Fucoxanthin Photoprotective [112]
    14 Porphyra sp. (P) Zeaxanthin, Alpha and beta carotene Anti-inflammatory, Photoprotection, Antioxidant, Antiaging [113]
    15 Gracilaria gracilis (Figure 1k) (R) Phycobiliproteins (R-phycoerythrin allophycocyanin, Phycocyanin) Antioxidant [104]
    16 Sargassum siliquastrum (P) Fucoxanthin Skin protector, Antiphotoaging, Antiwrinkle [114]
    17 Ulva lactuca (C) Zeaxanthin, Neoxanthin, Antheraxanthin, Siphonein, Siphoxanthin, Photoprotection, Antiphotoaging, Anti-inflammatory [115]
    18 Himanthalia elongata (P) Fucoxanthin extract Antioxidant [116]
    19 Ascophyllum nodosum (P) Fucoxanthin Antiagin, Antiwrinkle [117]
    20 Fucus vesiculosus (P) Fucoxanthin Antioxidant [118]
    21 Phaeophyta Fucoxanthin Antiphotoaging [119]
    22 Sargassum siliquastrum (P) Fucoxanthin Anti-melanogenic (skin whitening effect), Antioxidant, Anti-inflammatory [120]
    23 Gelidium crinale (R) Carotenoids Antioxidant [121]
    C, Chlorophyta; R, Rhodophyta; P, Phaeophyceae.

    6. Phenolic Compounds

    Phenolic compounds are one of the secondary metabolites that make an important group of components for skin cosmetic benefits. Due to wide varieties of biological actions, they can be incorporated in various skin cosmetic preparations. Theyr can be categorized into simple phenolic compounds and polyphenols, comprising bromophenols, phlorotannins, flavonoids, terpenoids, etc. [122]. Marine macroalgae0derived phenolic compounds and their cosmetic benefits are presented in Table 4.
    Table 4. Applications of macroalgae derived phenolic compounds in skin cosmetics.
    No. Name of Macroalgae Phenolic Compound/s Characterization or Analysis of Phenolic Compounds References
    1 Macrocystis pyrifera (P) Phlorotannins, Phloroeckol, Tetrameric phloroglucinol Antioxidant, Antidiabetic, Antiaging [123]
    2 Ascophyllum nodosum
    (Figure 1o) (P)
    Ascophyllan MMP inhibition [124]
    3 Cystoseira foeniculacea (P) Polyphenol Antioxidant [125]
    4 Stephanocystis hakodatensis (P) Phenol Antioxidant [126]
    5 Ecklonia cava subsp. Stolonifera (P) Fucofuroeckol-A Protection against UVB radiation [127]
    7 Corallina pilulifera (R) Phlorotannins Antiaging, antiinflammatio, antioxidants, antiallergic, UV screens [128]
    8 Ishige foliacea (P) Phlorotannin Antimelanogenic, inhibition of tyrosinase and melanin synthesis [129][130]
    10 Laminaria ochroleuca
    (P)
    Polyphenol Antioxidant [131]
    11 Caulerpa racemo®(C) Flavonoids, Hydroquinone, Saponins Tyrosinase inhibitor [132]
    12 Ecklonia cava (P) Dioxinodehydroeckol UV B protective [133]
    13 Ecklonia cava subsp. stolonifera (P) Phlorotannins Inhibition of Matric metalloproteins (MMPs), Antiwrinkle, Tyrosinase inhibitor, Skin whitener [134]
    14 Saccharina latissima (P) Phenol Antioxidant [135]
    15 Ecklonia cava (P) Dieckol Anti-adipogenesis [136]
    16 Ecklonia cava subsp. kurome (P) Phlorotannin Anti-inflammatory, Hyaluronidase inhibition [137]
    17 Caulerp®p. (C) Flavonoids, Phenols Tyrosinase inhibitors [138]
    18 Rhodomela conf®oides (R) Polyphenol, Bromophenol Antioxidant, Antimicrobial, DPPH inhibition [139]
    19 Eisenia bicyclis, Ecklonia Cava subsp. stolonifera (P) Eckol Anti-inflammation, Skin whitening activity [140][141]
    20 Schizymenia dubyi (Figure 1c) (R) Phenol Anti-melanogenic, Tyrosinase inhibition [142]
    21 Cystoseira compressa
    (P)
    Fuhalol Antioxidant [143]
      Cystoseira compressa
    (P)
    Fuhalol Antioxidant [143]
    22 Ecklonia cava (P) dieckol Promotes hair growth [144]
    23 Fucus vesiculosus (Figure 1a), Gongolaria nodicaulis, Ericaria selaginoides, Gongolaria usneoides, Ecklonia cava (P) Phlorotannins such as Fucophloroethol, Fucodiphloroethol, Fucotripholoroethol, Phlorofucofuroeckol bieckol or dieckol Skin whitening effect, Antioxidant, Anti-inflammatory, Antihistamine, Photoprotection [145]
    24 Ascophyllum nodosum
    (Figure 1o) (P)
    Phlorotannins, Eckols, Fucols, Phlorethols Inhibition of tyrosinase, Anti-inflammation, Anti UV, Anti-allergic, Chelators, Antiaging, Hyaluronidase inhibitor [145]
    25 Meristotheca dakarensis (R) Glucosaminoglycan Anti-aging, Collagen synthesis [12]
    26 Gongolaria nodicaulis,
    Ericaria selaginoides,
    Gongolaria usneoides (P)
    Phlorotannins such as bioeckol, 7-phloroeckol, phlorofucofuroeckol, fucophloroethol Anti-inflammation, Antioxidant, Anti-aging, Inhibition of hyaluronidase [145]
    27 Fucus spiralis
    (P)
    Phlorotannins Inhibition of lipid peroxidation, hyaluronidase inhibitor, antiaging, antiwrinkle, Anti-inflammatory, Antiwrinkle [145]
    28 Ecklonia cava, Ecklonia cava subsp. stolonifera (P) Eckol, 6,6′-bieckol, doeckol, Phlorofucofuroeckol-A, 8,8′-bieckol Anti-allergic [146]
    29 Eisenia bicyclis, Ecklonia cava subsp. stolonifera Phlorofucofuroeckol A Hepatoprotective, Anti-tyrosinase [147][148]
    30 Eisenia arborea, Ecklonia bicyclis (P) Phlorotannins Anti-inflammation, Hyaluronidase inhibitor, antiwrinkle [149]
    31 Eisenia arborea (P) Phlorofucofuroeckol A Anti-allergic [150]
    32 Ascophyllum nodosum
    (Figure 1o),
    Fucus serratus, Himanthalia elongata (Figure 1h),
    Sargassum muticum (P)
    Phlorotannins Antioxidant, Antibacterial, antiviral, photoprotection, Anti-inflammatory [151][152][153]
    33 Ecklonia cava (P) Eckols, fucols, phlorethols, Fuhalols, fucophlorethol Anti-aging, Anti-inflammation, Hyaluronidase inhibitor, antiallergic, UV protector [153]
    C, Chlorophyta; R, Rhodophyta; P, Phaeophyceae.

    7. Fatty Acids

    Seaweeds are well known for various types of fatty acids such as glycolipids, triglycerides, sterols, and phospholipids. The chemical structures of marine algae derived fatty acids are illustrated in Figure 7. These have been reported as being higher in seaweed as compared to terrestrial plants. Different types of fatty acids from different macroalgae and its cosmetic benefits are presented in Table 5.
    Table 5. Applications of macroalgae derived lipids and fatty acids in skin cosmetics.
    No. Name of Macroalgae Fatty acid Cosmetic Benefits References
    1 Chondrus crispus
    (R)
    EPA, AA, DHA, GLA, LA, Palmitic acid, Oleic acid Antiallergic, Anti-aging, Anti-inflammation, Antiwrinkle, Antimicrobial, Emollients, [154]
    2 Undaria pinnatifida
    (Figure 1b) (P)
    PUFA Anti-inflammatory [154]
    3 Ulva lactuca
    (Figure 1n) (P)
    Fatty acid such as C18 and C16 type In-vitro and in-vivo Nrf2-ARE activation, Cell protective, Antioxidant [155]
    4 Phaeophyceae
    (Brown algae) (P)
    Unsaturated Fatty acids Antioxidant [156]
    5 Ulva lactuca
    (Figure 1n) (P)
    Lipopeptides Inhibition of elastase, enhance collagen synthesis [157]
    6 Himanthalia elongata
    (Figure 1h) (P)
    Fatty acids and volatile compounds Antioxidant, Antimicrobial [158]
    7 Porphyridium purpureum (R) Eicosapentaenoic acid, Docosahexaenoic acid, Eicosatetraenoic acid, Polyunsaturated omega-3 fatty acids Antioxidant, Anti-inflammatory, Anti-photoaging [159]
    8 Ulva rigida (C), Gracilaria sp. (R), Fucus vesiculosus (Figure 1a), Saccharina latissima
    (P)
    Lipidic profile Antioxidant [160]
    9 Sargassum fusiforme (P) Fucosterol Protection against photodamage, UVB protector, MMP inhibition, Enhance procollagen formation, Anti-inflammatory [161][162]
    10 Gracilariopsis longissima (R), Saccharina japonica (P) (8E)-10-oxo-8-octadecenoic acid, (E)-9-oxo-10-octadecenoic acid, Myristic acid, Palmitic acid Anti-inflammatory [163]
    11 Silvetia siliquosa (P) Fucosterol Antioxidant, Stimulate antioxidant enzymes such as catalase, glutathione peroxidase [164][165]
    14 Sargassum fusiforme (P) Fucosterol Anti-aging, MMP inhibition [166]
    15 Codium fragile (C) Sterol Anti-inflammatory [167]
    C, Chlorophyta; R, Rhodophyta; P, Phaeophyceae.

    8. Minerals

    Depending on the environment in which macroalgae inhabit, they are highly diversified in mineral composition (especially with regards to trace elements including zinc, magnesium, aluminum, silica, copper, iodine, selenium, iron, manganese, and micronutrients including calcium, sodium, phosphorus, potassium, and chlorine).
    Minerals have a very essential vital role as cofactors of different metalloenzymes [168]. Moreover, a combination of calcium and magnesium improves barrier repairs in topical skincare products [169]. Indeed, acid-induced burns are relieved by gel solution containing calcium gluconate solution [170]. Likewise, magnesium silicate (talc) and magnesium sulphate (i.e., Epsom salts) have reported enhancement of skin benefits. Talc is most frequently useful in baby skin powders to prevent diaper rash. In adults, it can be used as a lubricant and to reduce wetness in the perineal and axillary areas [171]. In addition, Boisseau et al. [172] found improvements in skin softness and exfoliation, relief in muscle tension, and the promotion of relaxation by Epsom salts. They also reported the key regulatory role of Mg++ and Ca++ in the proliferation and differentiation of keratinocytes. Likewise, magnesium silicate (talc) and magnesium sulphate (Epsom salts) have reported enhancement of skin benefits.
    Talc is most frequently useful in baby skin powders to prevent diaper rash as well as in adults to reduce wetness in the perineal and axilla areas (and as a lubricant) [173]. They also reported the key regulatory role of Mg++ and Ca++ in the proliferation and differentiation of keratinocytes. ZnO-based skin protectants are cost-effective, easily formulated, and stable under aerobic conditions [173][174]. Zinc oxide is superior to zinc sulphate to mitigate inflammation and enhance re-epithelization of partial-thickness porcine skin [175]. Due to low water solubility, it sustains in the skin at the wound site. Newman et al. [176] revealed the importance of skin in sunburned skin and under ultraviolet exposure. Bissett et al. [177] found significantly delayed UV-induced tumors in Guinea pigs and mouse models by topical use of a 2-furildioxime (iron chelator).

    9. Summary

    Macroalgae are a valuable resource of bioactive components, with scientific evidence revealing their benefits for safer use in humans and wellbeing. Marine algae-derived molecules showed biological effects on the skin, such as skin whitening, antiaging, antiwrinkle, photoprotection, moisturizing, and collagen-boosting, anti-inflammatory, antimicrobial, anticellulite, antiviral, and anticancer activities. Moreover, many cosmeceutical companies already use marine algae extracts and have derived compounds from these extracts in their formulations. However, the biochemical profile monitoring of macroalgae presents a problem that industries need to overcome. The development of its cultivation and sustainable methods of extraction procedures shows the significant key for this confined, which is being analyzed with noteworthy benefits. However, more detail analysis requires to understand the exact mechanism of some compounds since some compounds have not been fully explored. Therefore, the further analysis and evaluation are essential to improve the quality of cosmetic formulations which will be useful to enhance consumers safety.

    References

    1. Kligman, D. Cosmeceuticals. Dermatol. Clin. 2000, 18, 609–615.
    2. Dureja, H.; Kaushik, D.; Gupta, M.; Kumar, V.; Lather, V. Cosmeceuticals: An emerging concept. Indian J. Pharmacol. 2005, 37, 155.
    3. Kerdudo, A.; Burger, P.; Merck, F.; Dingas, A.; Rolland, Y.; Michel, T.; Fernandez, X. Développement d’un ingrédient naturel: Étude de cas d’un conservateur naturel. Comptes. Rendus. Chim. 2016, 19, 1077–1089.
    4. Barrett, J.R. Chemical exposures: The ugly side of beauty products. Environ. Health Perspect. 2005, 113, 24–27.
    5. Cheong, K.L.; Qiu, H.M.; Du, H.; Liu, Y.; Khan, B.M. Oligosaccharides derived from red seaweed: Production, properties, and potential health and cosmetic applications. Molecules 2018, 23, 2451.
    6. Pereira, J.X.; Pereira, T.C. Cosmetics and its health risks. Glob. J. Med. Res. 2018, 18, 63–70.
    7. Ridder, M. Market Value for Natural and Organic Beauty Worldwide 2018–2027. Available online: https://www.statista.com/statistics/673641/global-market-value-for-natural-cosmetics/ (accessed on 18 November 2020).
    8. Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicin 2011, 19, 64–73.
    9. García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M. The evolution road of seaweed aquaculture: Cultivation technologies and the industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528.
    10. Veluchamy, C.H.A.N.D.R.A.; Palaniswamy, R.A.D.H.A. A review on marine algae and its applications. Asian J. Pharm. Clin. Res. 2020, 13, 21–27.
    11. Fu, W.; Nelson, D.R.; Yi, Z.; Xu, M.; Khraiwesh, B.; Jijakli, K.; Chaiboonchoe, A.; Alzahmi, A.; Al-Khairy, D.; Brynjolfsson, S.; et al. Bioactive compounds from microalgae: Current development and prospects. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 54, pp. 199–225.
    12. Couteau, C.; Coiffard, L. Phycocosmetics and other marine cosmetics, specific cosmetics formulated using marine resources. Mar. Drugs 2020, 18, 322.
    13. Alhajj, M.J.; Montero, N.; Yarce, C.J.; Salamanca, C.H. Lecithins from vegetable, land, and marine animal sources and their potential applications for cosmetic, food, and pharmaceutical sectors. Cosmetics 2020, 7, 87.
    14. Pallela, R.; Na-Young, Y.; Kim, S.K. Anti-photoaging and photoprotective compounds derived from marine organisms. Mar. Drugs 2010, 8, 1189–1202.
    15. Freitas, R.; Martins, A.; Silva, J.; Alves, C.; Pinteus, S.; Alves, J.; Teodoro, F.; Ribeiro, H.M.; Gonçalves, L.; Petrovski, Ž.; et al. Highlighting the biological potential of the brown seaweed Fucus spiralis for skin applications. Antioxidants 2020, 9, 611.
    16. Fernando, I.S.; Kim, M.; Son, K.T.; Jeong, Y.; Jeon, Y.J. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. J. Med. Food 2016, 19, 615–628.
    17. Indira, K.; Balakrishnan, S.; Srinivasan, M.; Bragadeeswaran, S.; Balasubramanian, T. Evaluation of in vitro antimicrobial property of seaweed (Halimeda tuna) from Tuticorin coast, Tamil Nadu, Southeast coast of India. Afr. J. Biotechnol. 2013, 12, 284–289.
    18. Liu, N.; Fu, X.; Duan, D.; Xu, J.; Gao, X.; Zhao, L. Evaluation of bioactivity of phenolic compounds from the brown seaweed of Sargassum fusiforme and development of their stable emulsion. J. Appl. Phycol. 2018, 30, 1955–1970.
    19. Brunt, E.G.; Burgess, J.G. The promise of marine molecules as cosmetic active ingredients. Int. J. Cosmet. Sci. 2018, 40, 1–15.
    20. Percival, E. The polysaccharides of green, red and brown seaweeds: Their basic structure, biosynthesis and function. Br. Phycol. J. 1979, 14, 103–117.
    21. Fernando, I.S.; Sanjeewa, K.A.; Samarakoon, K.W.; Lee, W.W.; Kim, H.S.; Kang, N.; Ranasinghe, P.; Lee, H.S.; Jeon, Y.J. A fucoidan fraction purified from Chnoospora minima; a potential inhibitor of LPS-induced inflammatory responses. Int. J. Biol. Macromol. 2017, 104, 1185–1193.
    22. Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487.
    23. Wang, Z.J.; Xu, W.; Liang, J.W.; Wang, C.S.; Kang, Y. Effect of fucoidan on B16 murine melanoma cell melanin formation and apoptosis. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 149–155.
    24. Teas, J.; Irhimeh, M.R. Melanoma and brown seaweed: An integrative hypothesis. J. Appl. Phycol. 2017, 29, 941–948.
    25. Ghorbanzadeh, B.; Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A. Mechanism underlying the anti-inflammatory effect of sulphated polysaccharide from Padina tetrastromatica against carrageenan induced paw edema in rats. Indian J. Pharmacol. 2015, 47, 292–298.
    26. Khan, M.N.; Yoon, S.J.; Choi, J.S.; Park, N.G.; Lee, H.H.; Cho, J.Y.; Hong, Y.K. Anti-edema effects of brown seaweed (Undaria pinnatifida) extract on phorbol 12-myristate 13-acetate-induced mouse ear inflammation. Am. J. Chin. Med. 2009, 37, 373–381.
    27. Vasconcelos, J.B.; de Vasconcelos, E.R.; Urrea-Victoria, V.; Bezerra, P.S.; Reis, T.N.; Cocentino, A.L.; Navarro, D.M.; Chow, F.; Areces, A.J.; Fujii, M.T. Antioxidant activity of three seaweeds from tropical reefs of Brazil: Potential sources for bioprospecting. J. Appl. Phycol. 2019, 31, 835–846.
    28. Santos, J.P.; Torres, P.B.; dos Santos, D.Y.; Motta, L.B.; Chow, F. Seasonal effects on antioxidant and anti-HIV activities of Brazilian seaweeds. J. Appl. Phycol. 2019, 31, 1333–1341.
    29. Kim, J.A.; Ahn, B.N.; Kong, C.S.; Kim, S.K. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts. Br. J. Dermatol. 2013, 168, 968–976.
    30. Robic, A.; Rondeau-Mouro, C.; Sassi, J.F.; Lerat, Y.; Lahaye, M. Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydr. Polym. 2009, 77, 206–216.
    31. Jiang, Z.; Hama, Y.; Yamaguchi, K.; Oda, T. Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264. 7 macrophages. J. Biochem. 2012, 151, 65–74.
    32. Isaka, S.; Cho, K.; Nakazono, S.; Abu, R.; Ueno, M.; Kim, D.; Oda, T. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis). Int. J. Biol. Macromol. 2015, 74, 68–75.
    33. Raposo, M.F.; De Morais, R.M.; de Morais, A.M.B. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs 2013, 11, 233–252.
    34. Kim, S.-K.; Ravichandran, Y.D.; Khan, S.B.; Kim, Y.T. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol. Bioprocess Eng. 2008, 13, 511–523.
    35. Pangestuti, R.; Shin, K.H.; Kim, S.K. Anti-photoaging and potential skin health benefits of seaweeds. Mar. Drugs 2021, 19, 172.
    36. Jesumani, V.; Du, H.; Pei, P.; Zheng, C.; Cheong, K.L.; Huang, N. Unravelling property of polysaccharides from Sargassum s as an anti-wrinkle and skin whitening property. Int. J. Biol. Macromol. 2019, 140, 216–224.
    37. Morya, V.K.; Kim, J.; Kim, E.K. Algal fucoidan: Structural and size-dependent bioactivities and their perspectives. Appl. Microbiol. Biotechnol. 2012, 93, 71–82.
    38. Sanjeewa, K.A.; Kang, N.; Ahn, G.; Jee, Y.; Kim, Y.T.; Jeon, Y.J. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: A review. Food Hydrocoll. 2018, 81, 200–208.
    39. Rupérez, P.; Ahrazem, O.; Leal, J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845.
    40. Zhang, Q.; Li, N.; Zhou, G.; Lu, X.; Xu, Z.; Li, Z. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodophyta) in aging mice. Pharmacol. Res. 2003, 48, 151–155.
    41. Zhang, Q.; Li, N.; Liu, X.; Zhao, Z.; Li, Z.; Xu, Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res. 2004, 339, 105–111.
    42. Ayoub, A.; Pereira, J.M.; Rioux, L.E.; Turgeon, S.L.; Beaulieu, M.; Moulin, V.J. Role of seaweed laminaran from Saccharina longicruris on matrix deposition during dermal tissue-engineered production. Int. J. Biol. Macromol. 2015, 75, 13–20.
    43. Ozanne, H.; Toumi, H.; Roubinet, B.; Landemarre, L.; Lespessailles, E.; Daniellou, R.; Cesaro, A. Laminarin effects, a β-(1,3)-Glucan, on skin cell inflammation and oxidation. Cosmetics 2020, 7, 66.
    44. Rioux, L.E.; Moulin, V.; Beaulieu, M.; Turgeon, S.L. Human skin fibroblast response is differentially regulated by galactofucan and low molecular weight galactofucan. Bioact. Carbohydr. Diet. Fibre 2013, 1, 105–110.
    45. Thevanayagam, H.; Mohamed, S.M.; Chu, W.L. Assessment of UVB-photoprotective and antioxidative activities of carrageenan in keratinocytes. J. Appl. Phycol. 2014, 26, 1813–1821.
    46. Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982.
    47. Pereira, L.; Gheda, S.F.; Ribeiro-Claro, P.J. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int. J. Carbohydr. Chem. 2013, 2013, 537202.
    48. Yang, J.H. Topical application of fucoidan improves atopic dermatitis symptoms in NC/Nga mice. Phytother. Res. 2012, 26, 1898–1903.
    49. Yang, Y.; Liu, D.; Wu, J.; Chen, Y.; Wang, S. In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis. Int. J. Biol. Macromol. 2011, 49, 1031–1037.
    50. Fournière, M.; Bedoux, G.; Lebonvallet, N.; Leschiera, R.; Le Goff-Pain, C.; Bourgougnon, N.; Latire, T. Poly-and oligosaccharide Ulva s fractions from enzyme-assisted extraction modulate the metabolism of extracellular matrix in human skin fibroblasts: Potential in anti-aging dermo-cosmetic applications. Mar. Drugs 2021, 19, 156.
    51. Jiang, N.; Li, B.; Wang, X.; Xu, X.; Liu, X.; Li, W.; Chang, X.; Li, H.; Qi, H. The antioxidant and antihyperlipidemic activities of phosphorylated polysaccharide from Ulva pertusa. Int. J. Biol. Macromol. 2020, 145, 1059–1065.
    52. Quinderé, A.L.; Fontes, B.P.; de SO Vanderlei, E.; de Queiroz, I.N.; Rodrigues, J.A.; de Araújo, I.W.; Jorge, R.J.; de Menezes, D.B.; e Silva, A.A.; Chaves, H.V.; et al. Peripheral antinociception and anti-edematogenic effect of a sulfated polysaccharide from Acanthophora muscoides. Pharmacol. Rep. 2013, 65, 600–613.
    53. Rodrigues, J.A.G.; de Queiroz, I.N.L.; Quinderé, A.L.G.; Benevides, N.M.B.; Tovar, A.M.F.; de Souza Mourão, P.A. Extraction and structural properties of Acanthophora muscoides (Rhodophyceae) extracellular matrix sulfated polysaccharides and their effects on coagulation. Acta Sci. Technol. 2016, 38, 273–282.
    54. Rodrigues, J.A.; de Queiroz, I.N.; Quinderé, A.L.; Benevides, N.M.; Tovar, A.M.; de Souza Mourão, P.A. Mild-acid hydrolysis of a native polysulfated fraction from Acanthophora muscoides generates sulfated oligosaccharides displaying in vitro thrombin generation inhibition. Acta Sci. Biol. Sci. 2016, 38, 7–15.
    55. Stengel, D.B.; Connan, S. Marine algae: A source of biomass for biotechnological applications. In Natural Products from Marine Algae. Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1308, pp. 1–37.
    56. Lahaye, M.; Robic, A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, 8, 1765–1774.
    57. Wijesinghe, W.A.; Jeon, Y.J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012, 88, 13–20.
    58. Dita, L.R.; Triastuti, J. Utilization of agar Gracilaria sp. as a natural thickener on liquid bath soap formulation. IOP Conf. Ser. Earth Environ. Sci. 2020, 441, 012021.
    59. Kordjazi, M.; Shabanpour, B.; Zabihi, E.; Faramarzi, M.A.; Feizi, F.; Gavlighi, H.A.; Feghhi, M.A.; Hosseini, S.A. Sulfated polysaccharides purified from two species of Padina improve collagen and epidermis formation in the rat. Int. J. Mol. Cell. Med. 2013, 2, 156–163.
    60. Malinowska, P. Algae extracts as active cosmetic ingredients. Zesz. Nauk. Uniw. Ekon. Pozn. 2011, 212, 123–129.
    61. Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630.
    62. Mizutani, S.; Deguchi, S.; Kobayashi, E.; Nishiyama, E.; Sagawa, H.; Kato, I. Fucoidan-Containing Cosmetics. U.S. Patent 2006/0093566A1, 4 May 2006.
    63. Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An ecosustainable source of cosmetic ingredients? Cosmetics 2021, 8, 8.
    64. Jesumani, V.; Du, H.; Pei, P.; Aslam, M.; Huang, N. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum. PLoS ONE 2020, 15, e0227308.
    65. Rupérez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26.
    66. Je, J.Y.; Park, P.J.; Kim, E.K.; Park, J.S.; Yoon, H.D.; Kim, K.R.; Ahn, C.B. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. LWT Food Sci. Technol. 2009, 42, 874–878.
    67. Pereira, L. Seaweeds as source of bioactive substances and skin care therapy—Cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 2018, 5, 68.
    68. Heo, S.J.; Ko, S.C.; Cha, S.H.; Kang, D.H.; Park, H.S.; Choi, Y.U.; Kim, D.; Jung, W.K.; Jeon, Y.J. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. Vitr. 2009, 23, 1123–1130.
    69. Ko, S.C.; Cha, S.H.; Heo, S.J.; Lee, S.H.; Kang, S.M.; Jeon, Y.J. Protective effect of Ecklonia cava on UVB-induced oxidative stress: In vitro and in vivo zebrafish model. J. Appl. Phycol. 2011, 23, 697–708.
    70. Fernando, I.P.S.; Kim, K.N.; Kim, D.; Jeon, Y.J. Algal polysaccharides: Potential bioactive substances for cosmeceutical applications. Crit. Rev. Biotechnol. 2019, 39, 99–113.
    71. Xue, C.; Yu, G.; Hirata, T.; Terao, J.; Lin, H. Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvents. Biosci. Biotechnol. Biochem. 1998, 62, 206–209.
    72. Berthon, J.Y.; Nachat-Kappes, R.; Bey, M.; Cadoret, J.P.; Renimel, I.; Filaire, E. Marine algae as attractive source to skin care. Free Radic. Res. 2017, 51, 555–567.
    73. Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant, and antidiabetic properties. J. Food Sci. 2018, 83, 6–16.
    74. Heo, S.J.; Lee, K.W.; Song, C.B.; Jean, Y.J. Antioxidant activity of enzymatic extracts from brown seaweeds. Bioresour. Technol. 2005, 96, 1613–1623.
    75. Gupta, P.L.; Rajput, M.; Oza, T.; Trivedi, U.; Sanghvi, G. Eminence of microbial products in cosmetic industry. Nat. Prod. Bioprospect. 2019, 9, 267–278.
    76. Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules 2019, 24, 4182.
    77. Barceló-Villalobos, M.; Figueroa, F.L.; Korbee, N.; Álvarez-Gómez, F.; Abreu, M.H. Production of mycosporine-like amino acids from Gracilaria vermiculophylla (Rhodophyta) cultured through one year in an integrated multi-trophic aquaculture (IMTA) system. Mar. Biotechnol. 2017, 19, 246–254.
    78. Leandro, A.; Pereira, L.; Gonçalves, A.M. Diverse applications of marine macroalgae. Mar. Drugs 2020, 18, 17.
    79. Hupel, M.; Lecointre, C.; Meudec, A.; Poupart, N.; Gall, E.A. Comparison of photoprotective responses to UV radiation in the brown seaweed Pelvetia canaliculata and the marine angiosperm Salicornia ramosissima. J. Exp. Mar. Biol. Ecol. 2011, 401, 36–47.
    80. Orfanoudaki, M.; Hartmann, A.; Karsten, U.; Ganzera, M. Chemical profiling of mycosporine-like amino acids in twenty-three red algal species. J. Phycol. 2019, 55, 393–403.
    81. Guglielmo, M.; Montanari, D. Cosmetic Composition with a Lifting Effect for Sustaining Relaxed Tissues. Patent WO2008146116 A2, 4 December 2008. Available online: https://patents.google.com/patent/WO2008146116A3/tr (accessed on 27 December 2021).
    82. Daniel, S.; Cornelia, S.; Fred, Z. UV-A sunscreen from red algae for protection against premature skin aging. Cosmet. Toilet. Manuf. Worldw. 2004, 2004, 139–143.
    83. Hartmann, A.; Becker, K.; Karsten, U.; Remias, D.; Ganzera, M. Analysis of mycosporine-like amino acids in selected algae and cyanobacteria by hydrophilic interaction liquid chromatography and a novel MAA from the red alga Catenella repens. Mar. Drugs 2015, 13, 6291–6305.
    84. Gao, Q.; Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol. 2011, 9, 791–802.
    85. Rangel, K.C.; Villela, L.Z.; de Castro Pereira, K.; Colepicolo, P.; Debonsi, H.M.; Gaspar, L.R. Assessment of the photoprotective potential and toxicity of Antarctic red macroalgae extracts from Curdiea racovitzae and Iridaea cordata for cosmetic use. Algal Res. 2020, 50, 101984.
    86. Hagino, H.; Saito, M. Use of Algal Proteins in Cosmetics. European Patent EP1433463B1, 22 September 2010. Available online: https://patents.google.com/patent/EP1433463B1/en (accessed on 27 December 2021).
    87. Fleurence, J. Seaweed proteins. In Proteins in Food Processing, 1st ed.; Yada, R.Y., Ed.; Woodhead Publishing: Cambridge, UK, 2004; pp. 197–213.
    88. Athukorala, Y.; Trang, S.; Kwok, C.; Yuan, Y.V. Antiproliferative and antioxidant activities and mycosporine-like amino acid profiles of wild-harvested and cultivated edible Canadian marine red macroalgae. Molecules 2016, 21, E119.
    89. Pereira, L. Characterization of Bioactive Components in Edible Algae, 1st ed.; Marine Drugs MDPI: Basel, Switzerland, 2020.
    90. Gedouin, A.; Valle, R.; Morvan, P.Y. Use of Algae Extract to Stimulate the Oxygen Uptake by the Cells Having Lipolytic Effect to Produce ATP Molecules. Patent FR2879098 A1, 16 June 2006. Available online: https://www.lens.org/lens/patent/FR_2879098_A1 (accessed on 28 October 2021).
    91. Lee, H.A.; Kim, I.H.; Nam, T.J. Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities Int. J. Mol. Med. 2015, 36, 1701–1706.
    92. Yuan, Y.V.; Westcott, N.D.; Hu, C.; Kitts, D.D. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem. 2009, 112, 321–328.
    93. Song, T.Y.; Chen, C.H.; Yang, N.C.; Fu, C.S. The correlation of in vitro mushroom tyrosinase activity with cellular tyrosinase activity and melanin formation in melanoma cells A2058. J. Food Drug Anal. 2009, 17, 4.
    94. Chan, Y.Y.; Kim, K.H.; Cheah, S.H. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol. 2011, 137, 1183–1188.
    95. Gianeti, M.D.; Maia Campos, P.M. Efficacy evaluation of a multifunctional cosmetic formulation: The benefits of a combination of active antioxidant substances. Molecules 2014, 19, 18268–18282.
    96. Ryu, J.; Park, S.J.; Kim, I.H.; Choi, Y.H.; Nam, T.J. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int. J. Mol. Med. 2014, 34, 796–803.
    97. Vega, J.; Schneider, G.; Moreira, B.R.; Herrera, C.; Bonomi-Barufi, J.; Figueroa, F.L. Mycosporine-like amino acids from red macroalgae: UV-photoprotectors with potential cosmeceutical applications. Appl. Sci. 2021, 11, 5112.
    98. Nishida, Y.; Kumagai, Y.; Michiba, S.; Yasui, H.; Kishimura, H. Efficient extraction and antioxidant capacity of mycosporine-like amino acids from red alga Dulse Palmaria palmata in Japan. Mar. Drugs 2020, 18, 502.
    99. Kim, M.S.; Oh, G.H.; Kim, M.J.; Hwang, J.K. Fucosterol inhibits matrix metalloproteinase expression and promotes type-1 procollagen production in UVB-induced HaCaT cells. Photochem. Photobiol. 2013, 89, 911–918.
    100. Kalasariya, H.S.; Yadav, V.K.; Yadav, K.K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B.-H. Seaweed-based molecules and their potential biological activities: An eco-sustainable cosmetics. Molecules 2021, 26, 5313.
    101. Shimoda, H.; Tanaka, J.; Shan, S.J.; Maoka, T. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J. Pharm. Pharmacol. 2010, 62, 1137–1145.
    102. Mise, T.; Ueda, M.; Yasumoto, T. Production of fucoxanthin-rich powder from Cladosiphon okamuranus. Adv. J. Food Sci. Technol. 2011, 3, 73–76.
    103. Sakai, S.; Komura, Y.; Nishimura, Y.; Sugawara, T.; Hirata, T. Inhibition of mast cell degranulation by phycoerythrin and its pigment moiety phycoerythrobilin, prepared from Porphyra yezoensis. Food Sci. Technol. Res. 2011, 17, 171–177.
    104. Francavilla, M.; Franchi, M.; Monteleone, M.; Caroppo, C. The red seaweed Gracilaria gracilis as a multi products source. Mar. Drugs 2013, 11, 3754–3776.
    105. Goldberg, S.L. The use of water soluble chlorophyll in oral sepsis: An experimental study of 300 cases. Am. J. Surg. 1943, 62, 117–123.
    106. Spears, K. Developments in food colourings: The natural alternatives. Trends Biotechnol. 1988, 6, 283–288.
    107. Lanfer-Marquez, U.M.; Barros, R.M.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891.
    108. Le Lann, K.; Surget, G.; Couteau, C.; Coiffard, L.; Cérantola, S.; Gaillard, F.; Larnicol, M.; Zubia, M.; Guérard, F.; Poupart, N.; et al. Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa. J. Appl. Phycol. 2016, 28, 3547–3559.
    109. Ishihara, K.; Oyamada, C.; Matsushima, R.; Murata, M.; Muraoka, T. Inhibitory effect of porphyran, prepared from dried “Nori”, on contact hypersensitivity in mice. Biosci. Biotechnol. Biochem. 2005, 69, 1824–1830.
    110. López-Hortas, L.; Flórez-Fernández, N.; Torres, M.D.; Ferreira-Anta, T.; Casas, M.P.; Balboa, E.M.; Falqué, E.; Domínguez, H. Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Mar. Drugs 2021, 19, 552.
    111. Marquardt, J.; Hanelt, D. Carotenoid composition of Delesseria lancifolia and other marine red algae from polar and temperate habitats. Eur. J. Phycol. 2004, 39, 285–292.
    112. Matsui, M.; Tanaka, K.; Higashiguchi, N.; Okawa, H.; Yamada, Y.; Tanaka, K.; Taira, S.; Aoyama, T.; Takanishi, M.; Natsume, C.; et al. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation. J. Pharmacol. Sci. 2016, 132, 55–64.
    113. Schubert, N.; García-Mendoza, E.; Pacheco-Ruiz, I. Carotenoid composition of marine red algae. J. Phycol. 2006, 42, 1208–1216.
    114. Heo, S.J.; Jeon, Y.J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B 2009, 95, 101–107.
    115. Jiang, H.; Gong, J.; Lou, W.; Dinghui, Z. Photosynthetic behaviors in response to intertidal zone and algal mat density in Ulva lactuca (Chlorophyta) along the coast of Nan’ao Island, Shantou, China. Environ. Sci. Pollut. Res. 2019, 26, 13346–13353.
    116. Rajauria, G.; Foley, B.; Abu-Ghannam, N. Characterization of dietary fucoxanthin from Himanthalia elongata brown seaweed. Food Res. Int. 2017, 99, 995–1001.
    117. Joshi, S.; Kumari, R.; Upasani, V.N. Applications of algae in cosmetics: An overview. Int. J. Innov. Res. Sci. Eng. Technol. 2018, 7, 1269.
    118. Zaragozá, M.C.; López, D.P.; Sáiz, M.; Poquet, M.; Pérez, J.; Puig-Parellada, P.; Marmol, F.; Simonetti, P.; Gardana, C.; Lerat, Y.; et al. Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. J. Agric. Food Chem. 2008, 56, 7773–7780.
    119. Urikura, I.; Sugawara, T.; Hirata, T. Protective effect of fucoxanthin against UVB-induced skin photoaging in hairless mice. Biosci. Biotechnol. Biochem. 2011, 75, 757–760.
    120. Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018, 9, 392.
    121. Panayotova, V.; Merzdhanova, A.; Dobreva, D.A.; Zlatanov, M.; Makedonski, L. Lipids of Black Sea algae: Unveiling their potential for pharmaceutical and cosmetic applications. J. IMAB Annu. Proceeding Sci. Pap. 2017, 23, 1747–1751.
    122. Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.; da Silva, G.J.; Pereira, L. Seaweed phenolics: From extraction to applications. Mar. Drugs 2020, 18, 384.
    123. Leyton, A.; Pezoa-Conte, R.; Barriga, A.; Buschmann, A.H.; Mäki-Arvela, P.; Mikkola, J.P.; Lienqueo, M.E. Identification and efficient extraction method of phlorotannins from the brown seaweed Macrocystis pyrifera using an orthogonal experimental design. Algal Res. 2016, 16, 201–208.
    124. Abu, R.; Jiang, Z.; Ueno, M.; Isaka, S.; Nakazono, S.; Okimura, T.; Cho, K.; Yamaguchi, K.; Kim, D.; Oda, T. Anti-metastatic effects of the sulfated polysaccharide ascophyllan isolated from Ascophyllum nodosum on B16 melanoma. Biochem. Biophys. Res. Commun. 2015, 458, 727–732.
    125. Messina, C.M.; Renda, G.; Laudicella, V.A.; Trepos, R.; Fauchon, M.; Hellio, C.; Santulli, A. From ecology to biotechnology, study of the defense strategies of algae and halophytes (from Trapani Saltworks, NW Sicily) with a focus on antioxidants and antimicrobial properties. Int. J. Mol. Sci. 2019, 20, 881.
    126. Airanthi, M.W.; Hosokawa, M.; Miyashita, K. Comparative antioxidant activity of edible Japanese brown seaweeds. J. Food Sci. 2011, 76, C104–C111.
    127. Vo, T.S.; Kim, S.-K.; Ryu, B.; Ngo, D.; Yoon, N.-Y.; Bach, L.G.; Hang, N.T.N.; Vo, T.S.; Kim, S.-K.; Ryu, B.; et al. The suppressive activity of fucofuroeckol-A derived from brown algal Ecklonia stolonifera Okamura on UVB-induced mast cell degranulation. Mar. Drugs 2018, 16, 1.
    128. Thomas, N.V.; Kim, S.K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013, 11, 146–164.
    129. Kim, K.N.; Yang, H.M.; Kang, S.M.; Kim, D.; Ahn, G.; Jeon, Y.J. Octaphlorethol A isolated from Ishige foliacea inhibits α-MSH-stimulated induced melanogenesis via ERK pathway in B16F10 melanoma cells. Food Chem. Toxicol. 2013, 59, 521–526.
    130. Kim, K.N.; Yang, H.M.; Kang, S.M.; Ahn, G.; Roh, S.W.; Lee, W.; Kim, D.; Jeon, Y.J. Whitening effect of octaphlorethol A isolated from Ishige foliacea in an in vivo zebrafish model. J. Microbiol. Biotechnol. 2015, 25, 448–4451.
    131. del Olmo, A.; Picon, A.; Nuñez, M. High pressure processing for the extension of Laminaria ochroleuca (kombu) shelf-life: A comparative study with seaweed salting and freezing. Innov. Food Sci. Emerg. Technol. 2019, 52, 420–428.
    132. Yang, H.; Liu, D.Q.; Liang, T.J.; Li, J.; Liu, A.H.; Yang, P.; Lin, K.; Yu, X.Q.; Guo, Y.W.; Mao, S.C.; et al. Racemosin C, a novel minor bisindole alkaloid with protein tyrosine phosphatase-1B inhibitory activity from the green alga Caulerpa racemosa. J. Asian Nat. Prod. Res. 2014, 16, 1158–1165.
    133. Ryu, B.; Ahn, B.N.; Kang, K.H.; Kim, Y.S.; Li, Y.X.; Kong, C.S.; Kim, S.K.; Kim, D.G. Dioxinodehydroeckol protects human keratinocyte cells from UVB-induced apoptosis modulated by related genes Bax/Bcl-2 and caspase pathway. J. Photochem. Photobiol. B Biol. 2015, 153, 352–357.
    134. Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 2004, 27, 1226–1232.
    135. Sappati, P.K.; Nayak, B.; VanWalsum, G.P.; Mulrey, O.T. Combined effects of seasonal variation and drying methods on the physicochemical properties and antioxidant activity of sugar kelp (Saccharina latissima). J. Appl. Phycol. 2019, 31, 1311–1332.
    136. Ko, S.C.; Lee, M.; Lee, J.H.; Lee, S.H.; Lim, Y.; Jeon, Y.J. Dieckol, a phlorotannin isolated from a brown seaweed, Ecklonia cava, inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes. Environ. Toxicol. Pharmacol. 2013, 36, 1253–1260.
    137. Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory activity of brown algal phlorotannins against hyaluronidase. Eur. J. Phycol. 2002, 37, 493–500.
    138. Aroyehun, A.Q.B.; Razak, S.A.; Palaniveloo, K.; Nagappan, T.; Rahmah, N.S.N.; Jin, G.W.; Chellappan, D.K.; Chellian, J.; Kunnath, A.P. Bioprospecting cultivated tropical green algae, Caulerpa racemosa (Forsskal) J. Agardh: A perspective on nutritional properties, antioxidative capacity and anti-diabetic potential. Foods 2020, 18, 1313.
    139. Saidani, K.; Bedjou, F.; Benabdesselam, F.; Touati, N. Antifungal activity of methanolic extracts of four Algerian marine algae species. Afr. J. Biotechnol. 2012, 11, 9496–9500.
    140. Manandhar, B.; Paudel, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Characterizing eckol as a therapeutic aid: A systematic review. Mar. Drugs 2019, 17, 361.
    141. Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.R.; Jung, H.A.; Choi, J.S. Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed Ecklonia stolonifera. Antioxidants 2019, 8, 240.
    142. Kim, S.K. Marine cosmeceuticals. J. Cosmet. Dermatol. 2014, 13, 56–67.
    143. Gheda, S.; Naby, M.A.; Mohamed, T.; Pereira, L.; Khamis, A. Antidiabetic and antioxidant activity of phlorotannins extracted from the brown seaweed Cystoseira compressa in streptozotocin-induced diabetic rats. Environ. Sci. Pollut. Res. Int. 2021, 28, 22886–22901.
    144. Kang, J.I.; Kim, S.C.; Kim, M.K.; Boo, H.J.; Jeon, Y.J.; Koh, Y.S.; Yoo, E.S.; Kang, S.M.; Kang, H.K. Effect of Dieckol, a component of Ecklonia cava, on the promotion of hair growth. Int. J. Mol. Sci. 2012, 13, 6407–6423.
    145. Ferreres, F.; Lopes, G.; Gil-Izquierdo, A.; Andrade, P.B.; Sousa, C.; Mouga, T.; Valentão, P. Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar. Drugs 2012, 10, 2766–2781.
    146. Sugiura, Y.; Kinoshita, Y.; Misumi, S.; Yamatani, H.; Katsuzaki, H.; Hayashi, Y.; Murase, N. Correlation between the seasonal variations in phlorotannin content and the antiallergic effects of the brown alga Ecklonia cava subs stolonifera. Algal Res. 2021, 58, 102398.
    147. Kim, S.M.; Kang, K.; Jeon, J.S.; Jho, E.H.; Kim, C.Y.; Nho, C.W.; Um, B.H. Isolation of phlorotannins from Eisenia bicyclis and their hepatoprotective effect against oxidative stress induced by tert-butyl hyperoxide. Appl. Biochem. Biotechnol. 2011, 165, 1296–1307.
    148. Catarino, M.D.; Amarante, S.J.; Mateus, N.; Silva, A.; Cardoso, S.M. Brown algae phlorotannins: A marine alternative to break the oxidative stress, inflammation and cancer network. Foods 2021, 10, 1478.
    149. Sugiura, Y.; Takeuchi, Y.; Kakinuma, M.; Amano, H. Inhibitory effects of seaweeds on histamine release from rat basophile leukemia cells (RBL-2H3). Fish Sci. 2006, 72, 1286–1291.
    150. Sugiura, Y.; Matsuda, K.; Yamada, Y.; Nishikawa, M.; Shioya, K.; Katsuzaki, H.; Imai, K.; Amano, H. Isolation of a new anti-allergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea. Biosci. Biotechnol. Biochem. 2006, 70, 2807–2811.
    151. Casas, M.P.; Rodríguez-Hermida, V.; Pérez-Larrán, P.; Conde, E.; Liveri, M.T.; Ribeiro, D.; Fernandes, E.; Domínguez, H. In vitro bioactive properties of phlorotannins recovered from hydrothermal treatment of Sargassum muticum. Sep. Purif. Technol. 2016, 167, 117–126.
    152. Eom, S.H.; Lee, E.H.; Park, K.; Kwon, J.Y.; Kim, P.H.; Jung, W.K.; Kim, Y.M. Eckol from Eisenia bicyclis inhibits inflammation through the Akt/NF-κB signaling in Propionibacterium acnes-induced human keratinocyte Hacat cells. J. Food Biochem. 2017, 41, e12312.
    153. Gager, L.; Connan, S.; Molla, M.; Couteau, C.; Arbona, J.F.; Coiffard, L.; Cérantola, S.; Stiger-Pouvreau, V. Active phlorotannins from seven brown seaweeds commercially harvested in Brittany (France) detected by 1H NMR and in vitro assays: Temporal variation and potential valorization in cosmetic applications. J. Appl. Phycol. 2020, 32, 2375–2386.
    154. Sanghvi, A.M.; Martin Lo, Y. Present and potential industrial applications of macro-and microalgae. Recent Pat. Food Nutr. Agric. 2010, 2, 187–194.
    155. Wang, R.; Paul, V.J.; Luesch, H. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2–ARE pathway. Free Radic. Biol. Med. 2013, 57, 141–153.
    156. Susanto, E.; Fahmi, A.S.; Abe, M.; Hosokawa, M.; Miyashita, K. Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown seaweeds. Aquat. Procedia 2016, 7, 66–75.
    157. Castejón, N.; Thorarinsdottir, K.A.; Einarsdóttir, R.; Kristbergsson, K.; Marteinsdóttir, G. Exploring the potential of icelandic seaweeds extracts produced by aqueous pulsed electric fields-assisted extraction for cosmetic applications. Mar. Drugs 2021, 19, 662.
    158. Plaza, M.; Santoyo, S.; Jaime, L.; Reina, G.G.; Herrero, M.; Señoráns, F.J.; Ibáñez, E. Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal. 2010, 51, 450–455.
    159. Li, T.; Xu, J.; Wu, H.; Jiang, P.; Chen, Z.; Xiang, W. Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Mar. Drugs 2019, 17, 124.
    160. Neto, R.T.; Marçal, C.; Queirós, A.S.; Abreu, H.; Silva, A.; Cardoso, S.M. Screening of Ulva rigida, Gracilaria s; Fucus vesiculosus and Saccharina latissima as functional ingredients. Int. J. Mol. Sci. 2018, 19, 2987.
    161. Sun, Z.; Mohamed, M.A.; Park, S.Y.; Yi, T.H. Fucosterol protects cobalt chloride induced inflammation by the inhibition of hypoxia-inducible factor through PI3K/Akt pathway. Int. Immunopharmacol. 2015, 29, 642–647.
    162. Hwang, E.; Park, S.Y.; Sun, Z.W.; Shin, H.S.; Lee, D.G.; Yi, T.H. The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts. Mar. Biotechnol. 2014, 16, 361–370.
    163. Patra, J.K.; Das, G.; Baek, K.H. Chemical composition and antioxidant and antibacterial activities of an essential oil extracted from an edible seaweed, Laminaria japonica L. Molecules 2015, 20, 12093–12113.
    164. Lee, S.; Lee, Y.S.; Jung, S.H.; Kang, S.S.; Shin, K.H. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch. Pharm. Res. 2003, 26, 719–722.
    165. Lee, Y.S.; Jung, S.H.; Lee, S.H.; Shin, K.H. Effects of the extracts from the marine algae Pelvetia siliquosa on hyperlipidemia in rats. Korean J. Pharmacogn. 2004, 35, 143–146.
    166. Zhen, X.-H.; Quan, Y.-C.; Jiang, H.-Y.; Wen, Z.-S.; Qu, Y.-L.; Guan, L.-P. Fucosterol, a sterol extracted from Sargassum fusiforme, shows antidepressant and anticonvulsant effects. Eur. J. Pharmacol. 2015, 768, 131–138.
    167. Lee, C.; Park, G.H.; Ahn, E.M.; Kim, B.A.; Park, C.I.; Jang, J.H. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia 2013, 86, 54–63.
    168. Mišurcová, L.; Ambrožová, J.; Samek, D. Seaweed lipids as nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 339–355.
    169. Fang, K.S.; Farboud, B.; Nuccitelli, R.; Isseroff, R.R. Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J. Invest. Dermatol. 1998, 111, 751–756.
    170. Trevino, M.A.; Herrmann, G.H.; Sprout, W.L. Treatment of severe hydrofluoric acid exposures. J. Occup. Environ. Med. 1983, 25, 861–863.
    171. Muscat, J.E.; Huncharek, M.S. Perineal talc use and ovarian cancer: A critical review. Eur. J. Cancer Prev. 2008, 17, 139–146.
    172. Boisseau, A.M.; Donatien, P.; Surlève-Bazeille, J.E.; Amédée, J.; Harmand, M.F.; Bézian, J.H.; Maleville, J.; Taieb, A. Production of epidermal sheets in a serum free culture system: A further appraisal of the role of extracellular calcium. J. Dermatol. Sci. 1992, 3, 111–120.
    173. Lansdown, A.B.; Mirastschijski, U.; Stubbs, N.; Scanlon, E.; Ågren, M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen 2007, 15, 2–16.
    174. FDA–Food and Drug Administration. Skin protectant drug products for over-the-counter human use; final monograph. Final rule. Fed. Regist. 2003, 68, 33362–33381. Available online: https://www.govinfo.gov/content/pkg/FR-2003-06-04/pdf/03-13751.pdf (accessed on 26 December 2021).
    175. Ågren, M.; Chvapil, M.; Franzén, L. Enhancement of re-epithelialization with topical zinc oxide in porcine partial-thickness wounds. J. Surg. Res. 1991, 50, 101–105.
    176. Newman, M.D.; Stotland, M.; Ellis, J.I. The safety of nanosized particles in titanium dioxide–and zinc oxide–based sunscreens. J. Am. Acad. Dermatol. 2009, 61, 685–692.
    177. Bissett, D.L.; McBride, J.F. Iron content of human epidermis from sun-exposed and non-exposed body sites. J. Soc. Cosmet. Chem. 1992, 43, 215–217.
    More
    Information
    Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
    View Times: 188
    Revisions: 4 times (View History)
    Update Date: 14 Mar 2022
    Table of Contents
      1000/1000

      Confirm

      Are you sure you want to delete?

      Video Upload Options

      Do you have a full video?
      Cite
      If you have any further questions, please contact Encyclopedia Editorial Office.
      Pereira, L. Role of Marine Macroalgae in Cosmeceuticals. Encyclopedia. Available online: https://encyclopedia.pub/entry/20488 (accessed on 02 February 2023).
      Pereira L. Role of Marine Macroalgae in Cosmeceuticals. Encyclopedia. Available at: https://encyclopedia.pub/entry/20488. Accessed February 02, 2023.
      Pereira, Leonel. "Role of Marine Macroalgae in Cosmeceuticals," Encyclopedia, https://encyclopedia.pub/entry/20488 (accessed February 02, 2023).
      Pereira, L. (2022, March 11). Role of Marine Macroalgae in Cosmeceuticals. In Encyclopedia. https://encyclopedia.pub/entry/20488
      Pereira, Leonel. ''Role of Marine Macroalgae in Cosmeceuticals.'' Encyclopedia. Web. 11 March, 2022.
      Top
      Feedback