Summary

The advent of biopharmaceuticals in current medicine brought enormous benefits to the treatment of life-threatening human diseases (e.g., cancer, diabetes and neurodegenerative disorders), and improved the well-being of many people worldwide. The global portfolio of these therapeutic products include proteins and antibodies, nucleic acids, and cell-based products, and continues to expand at a rapid pace - approvals in the period 2015-2018 essentially double the typical five-yearly historical approval pace (G. Walsh, Nat. Biotechnol., 36:1136-1145, 2018) -, representing a significant share of the entire market of pharmaceuticals.

Innovation in the (bio)pharmaceutical industry has been driven towards the development of cost-effective manufacturing processes, envisaging the delivery of products in high quantity, with superior quality (purity), and high specificity, with the ultimate goal of benefiting patients. Progress in this direction have resulted from the application of novel technologies in the upstream stage (high-throughput, single-use devices, statistical optimization of media and fermentation conditions, QbD, and continuous processing), while at the downstream level, chromatography has evolved through the development of new resins and ligands, coupled with advances in process modelling, operating and control strategies.

An emerging trend is the application of alternative solvents such as ionic liquids and deep eutectic solvents, in which their structure and physicochemical properties can be tuned to address unmet needs in (bio)pharmaceutical research. These compounds may be derived from natural and reneawable sources and hold great promise in the development of efficient, sustainable and cost-effective biopharmaceuticals purification processes.

This Entry Collection aims to provide the latest progresses achieved in pharmaceuticals bioprocessing. We welcome submissions of original research, comprehensive reviews and perspectives, including, but not limited, to the following fields:

- Upstream processing (genetic engineering, systems biology, difficult-to-express proteins, expression conditions, Quality by Design approaches, process analytical technologies);

- Chromatographic purification methods (process modelling and control, continuous bioprocessing, design and characterization of resins and ligands, new formats);

- Alternative purification methods (aqueous biphasic systems, filtration, crystallization, precipitation);

- Application of neoteric solvents in upstream and downstream stages;

- Analytical characterization of biopharmaceuticals (stability, post-translational modifications, biological activity, immunogenicity); 

Expand All
Entries
Topic Review
Cannabidiol as an OX1R Antagonist
The potential, multifaceted therapeutic profile of cannabidiol (CBD), a major constituent derived from the Cannabis sativa plant, covers a wide range of neurological and psychiatric disorders, ranging from anxiety to pediatric epilepsy and drug addiction. However, the molecular targets responsible for these effects have been only partially identified. In this view, the involvement of the orexin system, the key regulator in arousal and the sleep/wake cycle, and in motivation and reward processes, including drug addiction, prompted us to explore, using computational and experimental approaches, the possibility that CBD could act as a ligand of orexin receptors, orexin 1 receptor of type 1 (OX1R) and type 2 (OX2R). Ligand-binding assays showed that CBD is a selective ligand of OX1R in the low micromolar range (Ki 1.58 ± 0.2 μM) while in vitro functional assays, carried out by intracellular calcium imaging and mobilization assays, showed that CBD acts as an antagonist at this receptor. Finally, the putative binding mode of CBD has been inferred by molecular docking and molecular dynamics simulations and its selectivity toward the OX1R subtype rationalized at the molecular level. This study provides the first evidence that CBD acts as an OX1R antagonist, supporting its potential use in addictive disorders and/or body weight regulation. 
  • 1.1K
  • 18 Aug 2021
Topic Review
Lipophilic Polyamines
Gene therapy requires an effective and safe delivery vehicle for nucleic acids. Non-viral vehicles, including cationic liposomes, are intensively developed now. The structure of compounds composing them determines the delivery efficiency a lot. This review focuses on polycationic amphiphiles as prospective compounds for liposomal formulations and includes a discussion of the mutual influence of structural components. 
  • 1.1K
  • 11 Aug 2021
Topic Review
Grape Infusions
Grape-infusion preparation is no more than a sustainable or green way of extracting polyphenols and other nutraceutical compounds from grapes and grape leaves.  Grapes and grape/wine by-products are a rich source of health-promoting compounds, presenting great potential for the development of new beverages. 
  • 2.2K
  • 11 Aug 2021
Topic Review
Omega-3's Biological Actions
Schizophrenia is a severe psychiatric disorder affecting more than 20 million individuals worldwide. According to the well-established clinical staging model, schizophrenia is a progressive illness that typically emerges during late adolescence and transitions through several evolving stages: early vulnerability, at-risk mental state (also called ultra-high risk, abbreviated UHR), first episode psychosis (FEP), and chronic schizophrenia. The transition from one stage to the other is not inevitable, and it has been observed that only one-third of UHR individuals convert to psychosis after a 3-year follow-up.
  • 831
  • 06 Aug 2021
Topic Review
Actinobacteria and Environmental Adaptations
Actinobacteria are among the secondary metabolites producers and hold high pharmacological and commercial interest. It has great capability to produce secondary metabolites such as immunomodulators, antibiotics, anti-cancer drugs, growth factors, anthelminthic enzymes and herbicides.describes the historical isolation of bioactive compounds from Actinobacteria from the first isolation by Selman Waksman.
  • 1.6K
  • 05 Aug 2021
Topic Review
Paclitaxel and Breast Cancer
Paclitaxel (PTX), the most widely used anticancer drug, is applied for the treatment of various types of malignant diseases. Mechanisms of PTX action represent several ways in which PTX affects cellular processes resulting in programmed cell death. PTX is frequently used as the first-line treatment drug in breast cancer (BC). Unfortunately, the resistance of BC to PTX treatment is a great obstacle in clinical applications and one of the major causes of death associated with treatment failure. Factors contributing to PTX resistance, such as ABC transporters, microRNAs (miRNAs), or mutations in certain genes, along with side effects of PTX including peripheral neuropathy or hypersensitivity associated with the vehicle used to overcome its poor solubility, are responsible for intensive research concerning the use of PTX in preclinical and clinical studies. Novelties such as albumin-bound PTX (nab-PTX) demonstrate a progressive approach leading to higher efficiency and decreased risk of side effects after drug administration. Moreover, PTX nanoparticles for targeted treatment of BC promise a stable and efficient therapeutic intervention.
  • 1.0K
  • 05 Aug 2021
Topic Review
Antitumor Action of Mango Peel
Today, an improved understanding of cancer cell response to cellular stress has become more necessary. Indeed, targeting the intracellular pro-oxidant/antioxidant balance triggering the tumor commitment to cell demise could represent an advantageous strategy to develop cancer-tailored therapies. Ethanolic extracts from Mangifera indica L. have been proved to possess anti-tumor properties in many cancer systems. However, although most effects have been demonstrated with fruit pulp extract, the underlying molecular mechanisms of mango peel are still unclear. This research was undertaken to explore the effects of mango peel extract (MPE) on colon cancer cell lines. Data obtained demonstrated that MPE can affect the cell viability of three colon cancer cell lines (HT29, Caco-2 and HCT116), inducing an imbalance of cellular redox responses. A consistent decline in thiol group content, which was accompanied by upregulation of MnSOD—a mitochondrial scavenger enzyme that modulates the cellular response against oxidative damage- was observed. Such an effect was the consequence of an early production of mitochondrial superoxide anions that appeared after just 30 min of exposure of colon cancer cells to MPE. The effect was accompanied by mitochondrial injury, consisting of the dissipation of mitochondrial membrane potential and a decrease in the level of proteins localized in the mitochondrial membrane (VDAC1, mitofilin, and some members of Bcl-2 family) —with the mitochondrial release of apoptogenic factors (cytochrome C and AIF). The analysis of the cytotoxic effects exerted by the different constituents of MPE (gallic acid, mangiferin, citric acid, quinic acid, pentagalloyl glucose, and methyl gallate) allowed us to identify those phytochemicals responsible for the observed anticancer effects, sustaining their future employment as chemopreventive or therapeutic agents.
  • 1.7K
  • 04 Aug 2021
Topic Review
Cyclodextrin Multicomponent Complexes: Pharmaceutical Applications
Cyclodextrins (CD) are a family of macromolecules obtained by enzymatic degradation of starch. Their structure resembles a truncated cone, with a somewhat lipophilic central cavity and an external hydrophilic surface.  Due to these characteristics the pharmaceutical applications are mostly related to the ability of CDs to form inclusion complexes, formed by interactions between guest (drug) and host (CD) molecules, and they have the ability to modulate several properties positively affecting the performances and therapeutic profiles of drugs. Besides, a drug–CD complex with the addition of an auxiliary substance, that are called multicomponent or ternary complex, can have a synergic effect, allowing the use of low concentrations of the host compounds, thereby optimizing the cost, toxicity and formulation volume in the final product. Also, these additives such as amino acids, organic acids and bases, and water-soluble polymers interacting with CDs can modulate in vitro and in vivo drug dissolution, thereby modifying the drug’s pharmacokinetic profile.
  • 1.2K
  • 30 Aug 2021
Topic Review
Euphorbia
Euphorbia genus (Euphorbiaceae family), which is the third largest genus of angiosperm plants comprising ca. 2000 recognized species, is used all over the world in traditional medicine, especially in the traditional Chinese medicine. Members of this taxa are promptly recognizable by their specialized inflorescences and latex. In this review, an overview of Euphorbia-derived natural products such as essential oils, extracts, and pure compounds, active in a broad range of biological activities, and with potential usages in health maintenance, is described. The chemical composition of essential oils from Euphorbia species revealed the presence of more than 80 phytochemicals, mainly oxygenated sesquiterpenes and sesquiterpenes hydrocarbons, while Euphorbia extracts contain secondary metabolites such as sesquiterpenes, diterpenes, sterols, flavonoids, and other polyphenols. 
  • 2.6K
  • 26 Jul 2021
Topic Review
Microbes’ Roles in Wound Healing
Normal wound healing cascade is highly dynamic and has four distinct overlapping phases which involves several cellular and molecular interactions. It is known to be one of the most complicated processes in human body. The wound healing mechanism can be interrupted due to the involvement of several diseases that eventually develop to chronic wounds such as in diabetic foot ulcers. Infection is a common problem in chronic wound cause by microbes residing on the superficial layer of the skin. It is frequently resulting in impaired wound healing and patient morbidity and mortality. Antibiotic therapy and wound dressings are the main treatments to treat infected chronic wounds. However, the presence of polymicrobial infections, formation of bacterial biofilms and antibiotics resistance are the major challenges faced by healthcare providers to kill or eliminate the microbes from the wounds. Considering all the possible factors, more studies are needed to elucidate the role of microbes as well as the selection of suitable empirical antibiotics in reducing the infections and provide optimal healing in chronic wounds.  
  • 2.1K
  • 23 Jul 2021
  • Page
  • of
  • 65
>>