Summary

Neurodegeneration refers to the progressive loss of neuron structure or function, which may eventually lead to cell death. Many neurodegenerative diseases, such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease and prion disease, are the results of neurodegenerative processes. Neurodegeneration can be found in many different levels of neuronal circuits in the brain, from molecules to systems. Since there is no known method to reverse the progressive degeneration of neurons, these diseases are considered incurable. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assembly (such as protein diseases) and induction of cell death. These similarities indicate that progress in the treatment of one neurodegenerative disease may also improve other diseases. This collection of entries aims to collect various medical research results related to neurodegeneration. We invite researchers to share their new results and ideas related to neurodegeneration.

Expand All
Entries
Topic Review
Apathy in Parkinson’s Disease
Apathy is a neurobehavioural symptom affecting Parkinson’s disease patients of all disease stages. Apathy seems to be associated with a specific underlying non-motor disease subtype and reflects dysfunction of separate neural networks with distinct neurotransmitter systems.
  • 628
  • 01 Aug 2022
Topic Review
Regulation of Amylin and Secretases on Alzheimer’s Disease
Alzheimer’s disease remains a prevailing neurodegenerative condition which has an array physical, emotional, and financial consequences to patients and society. Among these biomolecules, there are four modulatory mechanisms of interest: alpha-, beta-, gamma-secretases, and amylin. Thus, regulation of these might have a potential therapeutic function for treatment of AD.
  • 584
  • 29 Jul 2022
Topic Review
Determination of Anti-Neurodegenerative Disease Activity of Plant Compounds
Neurodegenerative diseases, among which one of the most common is Alzheimer’s disease, are a multifactorial disease and therefore demand multiple therapeutic approaches.  In the last few years, different active constituents from plants have been tested as potential drugs in neurodegenerative disease therapy. The availability, lower price and less toxic effects of herbal medicines compared with synthetic agents make them a simple and excellent choice in the treatment of neurodegenerative diseases. The empirical approach to discovering new drugs from the systematic screening of plant extracts or plant-derived compounds is still an important strategy when it comes to finding new biologically active substances.
  • 469
  • 30 Jul 2022
Topic Review
Differential Diagnosis of Carpal Tunnel Syndrome
Carpal tunnel syndrome (CTS) is the most common median nerve compression neuropathy. Its symptoms and clinical presentation are well known. However, symptoms at median nerve distribution can also be caused by a proximal problem. Pronator syndrome (PS) and anterior interosseous nerve syndrome (AINS) with their typical characteristics have been thought to explain proximal median nerve problems.
  • 959
  • 27 Jul 2022
Topic Review
Skeletal Muscle Pathogenesis in Polyglutamine Diseases
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary site of toxicity of polyglutamine-expanded androgen receptor, but it is also affected in other polyglutamine diseases, more likely due to neuronal dysfunction and death. Nonetheless, pathological processes occurring in skeletal muscle atrophy impact the entire body metabolism, thus actively contributing to the inexorable progression towards the late and final stages of disease. 
  • 480
  • 28 Jul 2022
Topic Review
Applications of Strain-Amplification Techniques with α-Synuclein
α-Synuclein (αS) is remarkable for both its extensive conformational plasticity and pathologic prion-like properties. A fundamental understanding of αS’ conformational properties has been translated to the development of strain amplification technologies, which have provided further insight into the role of specific strains in distinct α-synucleinopathies, and show promise for the early diagnosis of disease. Strain amplification assays, protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT-QuIC), are powerful emerging techniques that can detect misfolded αS to diagnose and differentiate synucleinopathies.
  • 563
  • 27 Jul 2022
Topic Review
Fibrinogen, Fibrinogen Chains, Its Derivatives, and Fibrinogen-Like Proteins
Fibrinogen (Fg), its derivatives and Fg-like other proteins play a considerable role in many diseases. For example, increased levels of Fg have been found in many inflammatory diseases, such as Alzheimer’s disease, multiple sclerosis, traumatic brain injury, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Associations of Fg, Fg chains, its derivatives and Fg-like proteins with various diseases have been established and their specific effects and the mechanisms of actions gradually become more evident. 
  • 522
  • 27 Jul 2022
Topic Review
Biomolecule Delivery in Neuroregeneration Strategies
Neurodegenerative disorders have sophisticated etiology and represent a serious challenge for society. Among the various risk factors, oxidative stress and chronic neuroinflammation (which can be due to viral infection or other causes) are involved in the pathogenesis of Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington disease (HD), and amyotrophic lateral sclerosis (ALS). Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. Researchers place emphasis on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles), hydrogels, and scaffolds. 
  • 410
  • 25 Jul 2022
Topic Review
Exosomes in Alpha-Synucleinopathies
The pathological accumulation of alpha-synuclein governs the pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, collectively termed alpha-synucleinopathies. Alpha-synuclein can be released in the extracellular space, partly via exosomes, and this extracellular protein pool may contribute to disease progression by facilitating the spread of pathological alpha-synuclein or activating immune cells. The content of exosomes depends on their origin and includes specific proteins, lipids, functional mRNAs and various non-coding RNAs. Given their ability to mediate intercellular communication via the transport of multilevel information, exosomes are considered to be transporters of toxic agents. Beyond neurons, glial cells also release exosomes, which may contain inflammatory molecules and this glia-to-neuron or neuron-to-glia transmission of exosomal alpha-synuclein may contribute to the propagation of pathology and neuroinflammation throughout the brain. In addition, as their content varies as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection, whereas targeted exosomes may be used as scaffolds to deliver therapeutic agents into the brain.
  • 492
  • 21 Jul 2022
Topic Review
Fenretinide in Cancer and Neurological Disease
Cancer and neurodegeneration share leadership as causes of morbidity and death worldwide. They can be thought as disease mechanisms at opposite ends: while in neurodegeneration, induction of inflammatory genes and suppression of cell-cycle genes are the prominent signals; the opposite happens in cancer. Fenretinide (all-trans-N-(4-hydroxyphenyl) retinamide, 4-HPR) is a synthetic derivative of all-trans-retinoic acid initially proposed in anticancer therapy for its antitumor effects combined with limited toxicity. It is also studied in many other diseases for its ability to influence several biological pathways and provide a broad spectrum of pharmacological effects.
  • 537
  • 18 Jul 2022
  • Page
  • of
  • 49
>>