Topic Review
Fuel Economy in Aircraft
The fuel economy in aircraft is the measure of the transport energy efficiency of aircraft. Efficiency is increased with better aerodynamics and by reducing weight, and with improved engine BSFC and propulsive efficiency or TSFC. Endurance and range can be maximized with the optimum airspeed, and economy is better at optimum altitudes, usually higher. An airline efficiency depends on its fleet fuel burn, seating density, air cargo and passenger load factor, while operational procedures like maintenance and routing can save fuel. Average fuel burn of new aircraft fell 45% from 1968 to 2014, a compounded annual reduction 1.3% with a variable reduction rate. In 2018, CO₂ emissions totalled 747 million tonnes for passenger transport, for 8.5 trillion revenue passenger kilometres (RPK), giving an average of 88 gram CO₂ per RPK. A 88 gCO₂/km represents 28 g of fuel per km, or a 3.5 L/100 km (67 mpg‑US) fuel consumption. New technology can reduce engine fuel consumption, like higher pressure and bypass ratios, geared turbofans, open rotors, hybrid electric or fully electric propulsion; and airframe efficiency with retrofits, better materials and systems and advanced aerodynamics.
  • 10.4K
  • 01 Nov 2022
Topic Review
Cost of Electricity by Source
The distinct methods of electricity generation can incur significantly different costs and these costs can occur at significantly different times relative to when the power is used. Also, calculations of these costs can be made at the point of connection to a load or to the electricity grid (ie they may or may not include the transmission costs). The costs include the initial capital, and the costs of continuous operation, fuel, and maintenance as well as the costs of de-commissioning and remediating any environmental damage. For comparing different methods, it is useful to compare costs per unit of energy which is typically given per kilowatt-hour or megawatt-hour. This type of calculation assists policymakers, researchers and others to guide discussions and decision-making but is usually complicated by the need to take account of differences in timing by means of a discount rate.
  • 10.4K
  • 13 Oct 2022
Topic Review
Vocaloid
Vocaloid is a singing voice synthesizer and the first engine released in the Vocaloid series. It was succeeded by Vocaloid 2. This version was made to be able to sing both English and Japanese.
  • 10.3K
  • 17 Oct 2022
Topic Review
Snakes and Ladders
Snakes and Ladders, known originally as Moksha Patam, is an ancient Indian board game for two or more players regarded today as a worldwide classic. It is played on a game board with numbered, gridded squares. A number of "ladders" and "snakes" are pictured on the board, each connecting two specific board squares. The object of the game is to navigate one's game piece, according to die rolls, from the start (bottom square) to the finish (top square), helped by climbing ladders but hindered by falling down snakes. The game is a simple race based on sheer luck, and it is popular with young children. The historic version had its roots in morality lessons, on which a player's progression up the board represented a life journey complicated by virtues (ladders) and vices (snakes). The game is also sold under other names such as Chutes and Ladders, Bible Ups and Downs, etc., some with a morality motif; a morality Chutes and Ladders was published by Milton Bradley starting from 1943.
  • 10.3K
  • 09 Oct 2022
Topic Review
Astronomy in the Medieval Islamic World
Islamic astronomy comprises the astronomical developments made in the Islamic world, particularly during the Islamic Golden Age (9th–13th centuries), and mostly written in the Arabic language. These developments mostly took place in the Middle East, Central Asia, Al-Andalus, and North Africa, and later in the Far East and India. It closely parallels the genesis of other Islamic sciences in its assimilation of foreign material and the amalgamation of the disparate elements of that material to create a science with Islamic characteristics. These included Greek, Sassanid, and Indian works in particular, which were translated and built upon. Islamic astronomy played a significant role in the revival of Byzantine and European astronomy following the loss of knowledge during the early medieval period, notably with the production of Latin translations of Arabic works during the 12th century. Islamic astronomy also had an influence on Chinese astronomy and Malian astronomy. A significant number of stars in the sky, such as Aldebaran, Altair and Deneb, and astronomical terms such as alidade, azimuth, and nadir, are still referred to by their Arabic names. A large corpus of literature from Islamic astronomy remains today, numbering approximately 10,000 manuscripts scattered throughout the world, many of which have not been read or catalogued. Even so, a reasonably accurate picture of Islamic activity in the field of astronomy can be reconstructed.
  • 10.3K
  • 24 Nov 2022
Topic Review
Perceptual Organization
Gestalt theory has provided perceptual science with a conceptual framework relating to brain mechanisms that determine the way we see the visual world. This is referred to as "Perceptual Organization" and has inspired researchers in Psychology, Neuroscience and Computational Design ever since. The major Gestalt principles, such as the principle of Prägnanz, and more importantly the Gestalt laws of perceptual organization, have been critically important to our understanding of visual information processing, how the brain detects order in what we see, and derives likely perceptual representations from statistically significant structural regularities. The perceptual integration of contrast information across co-linear space for the organization of objects in the 2D image plane into figure and ground convey the most elementary basis to our understanding of the visual world. Gestalt theory continues to generate powerful concepts and insights for perceptual science even today, where it is to be placed in the context of image-base decision making by human minds and machines.
  • 10.3K
  • 22 Mar 2021
Topic Review
Physical Properties of Food Materials
The physical properties of food materials have defined those properties that can only be measured by physical means rather than chemical means. Food materials are basically naturally occurring biological-originated raw materials that have their own exclusive physical identity that makes them unique in nature. Due to the uniqueness of their physical properties, to properly measure the different physical characteristics of any food materials to get control and understand about the changes in their native physical characteristics with the influence of time-temperature-processing-treatment-exposure, proper measurement techniques for various physical properties of food materials are required with numerous desired outputs.
  • 10.3K
  • 25 Feb 2022
Topic Review
Apple juice fermentation process
This work emphasized the apple fermentation process and showed how the fermentation can be affected by the first material composition and the used microorganisms.
  • 10.3K
  • 19 Aug 2020
Topic Review
World Index of Moral Freedom
{{Multiple issues| The World Index of Moral Freedom is sponsored and published by the Foundation for the Advancement of Liberty, a libertarian think tank based in Madrid, Spain . The Index is an international index ranking one hundred and sixty countries on their performance on five categories of indicators: The WIMF's first edition was published on 2 April 2016, co-authored by Foundation researchers Andreas Kohl and Juan Pina. A second edition was published by the same foundation in July 2018, this time authored by Juan Pina and Emma Watson.
  • 10.2K
  • 29 Sep 2022
Topic Review
Root-Finding Algorithm
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeroes, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeroes of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeroes, expressed either as floating point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound). Solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) – g(x). Thus root-finding algorithms allow solving any equation defined by continuous functions. However, most root-finding algorithms do not guarantee that they will find all the roots; in particular, if such an algorithm does not find any root, that does not mean that no root exists. Most numerical root-finding methods use iteration, producing a sequence of numbers that hopefully converge towards the root as a limit. They require one or more initial guesses of the root as starting values, then each iteration of the algorithm produces a successively more accurate approximation to the root. Since the iteration must be stopped at some point these methods produce an approximation to the root, not an exact solution. Many methods compute subsequent values by evaluating an auxiliary function on the preceding values. The limit is thus a fixed point of the auxiliary function, which is chosen for having the roots of the original equation as fixed points, and for converging rapidly to these fixed points. The behaviour of general root-finding algorithms is studied in numerical analysis. However, for polynomials, root-finding study belongs generally to computer algebra, since algebraic properties of polynomials are fundamental for the most efficient algorithms. The efficiency of an algorithm may depend dramatically on the characteristics of the given functions. For example, many algorithms use the derivative of the input function, while others work on every continuous function. In general, numerical algorithms are not guaranteed to find all the roots of a function, so failing to find a root does not prove that there is no root. However, for polynomials, there are specific algorithms that use algebraic properties for certifying that no root is missed, and locating the roots in separate intervals (or disks for complex roots) that are small enough to ensure the convergence of numerical methods (typically Newton's method) to the unique root so located.
  • 10.2K
  • 14 Oct 2022
  • Page
  • of
  • 5488
Video Production Service