Topic Review
Gut Lymphatic Vessels
Lymphatic vessels play a distinctive role in draining fluid, molecules and even cells from interstitial and serosal spaces back to the blood circulation. Lymph vessels of the gut, and especially those located in the villi (called lacteals), not only serve this primary function, but are also responsible for the transport of lipid moieties absorbed by the intestinal mucosa and serve as a second line of defence against possible bacterial infections.
  • 998
  • 15 Oct 2021
Topic Review
New Insights into Melanocytes Beyond Conventional Recognition
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin’s well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor.In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight.
  • 973
  • 18 Jul 2022
Topic Review
AMP-activated Protein Kinase
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. If this is the case, then aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between a wide variety of conditions associated with metabolic disorder.
  • 971
  • 10 May 2021
Topic Review
Resveratrol Treatment and Periodontal Disease
Resveratrol is an anti-inflammatory compound found in several foods. Periodontal disease (PD) is associated to other systemic diseases, and inflammation may be responsible for the association. 
  • 932
  • 23 Sep 2021
Topic Review
Intra-Arterial Delivery of Therapeutics
Diseases of the kidney contribute a significant morbidity and mortality burden on society. Localized delivery of therapeutics directly into the kidney, via its arterial blood supply, has the potential to enhance their therapeutic efficacy while limiting side effects associated with conventional systemic delivery. Targeted delivery in humans is feasible given that we can access the renal arterial blood supply using minimally invasive endovascular techniques and imaging guidance. Techniques to reproduce or mimic this approach in a small animal model  will allow for further pre-clinical translational studies investigating therapies for the treatment of renal pathologies.
  • 929
  • 30 Oct 2020
Topic Review
Sarcopenia: a Cause and Consequence of Metabolic Dysregulation
Skeletal muscle mass plays a critical role in a healthy lifespan by helping to regulate glucose homeostasis. As seen in sarcopenia, decreased skeletal muscle mass impairs glucose homeostasis, but it may also be caused by glucose dysregulation. Gut microbiota modulates lipopolysaccharide (LPS) production, short-chain fatty acids (SCFA), and various metabolites that affect the host metabolism, including skeletal muscle tissues, and may have a role in the sarcopenia etiology. The evidence presented in this entry suggests that loss of muscle mass and function are not an inevitable consequence of the aging process, and that dietary and lifestyle interventions may prevent or delay sarcopenia.
  • 917
  • 29 Mar 2022
Topic Review
MGluRI and ErbB Receptors
It is well-appreciated that phosphorylation is an essential post-translational mechanism of regulation for several proteins, including group 1 metabotropic glutamate receptors (mGluRI), mGluR1 and mGluR5 subtypes. While contributions of various serine/threonine protein kinases on mGluRI modulation have been recognized, the functional role of tyrosine kinases (TKs) is less acknowledged. Here, we describe current evidence on the modulatory roles of the ErbB tyrosine kinases receptors - activated by the neurotrophic factors neuregulins (NRGs) - on mGluRI function. Available evidence suggests that mGluRI activity is tightly dependent on ErbB signaling, and that ErbB's modulation profoundly influences mGluRI-dependent effects on neurotransmission, neuronal excitability, synaptic plasticity, and learning and memory processes. 
  • 911
  • 13 Nov 2020
Topic Review
TPC1 in plants
TPC1 in plants is localized in the vacuolar membrane. Its activity is strictly regulated by several factors emphasizing its complex structure and function. The physiological role of TPC1 is under debate. The TPC1 hyperactive version fou2 (carring D454N mutation) is characterized by an overproduction of jasmonate acid (JA), however the tpc1-2 knockout mutant has no pronounced phenotype. The intriguing concept of Ca2+-induced Ca2+ release was assigned to Vicia faba TPC1 in 1994 by Ward and Schroeder, however it has still not been confirmed for the model plant Arabidopsis thaliana.
  • 909
  • 27 Oct 2020
Topic Review
MCPIP1
MCPIP1 (also known as regnase-1) is encoded by the ZC3H12A gene and is composed of 599 amino acids that encode a 66-kDa protein. MCPIP1 is a potent anti-inflammatory protein, and plays many roles within the regulation of the immune response.
  • 890
  • 22 Oct 2020
Topic Review
Oxidative Stress in Obesity
Adipose tissue (AT) storage capacity is central in the maintenance of whole-body homeostasis, especially in obesity states. However, sustained nutrients overflow may dysregulate this function resulting in adipocytes hypertrophy, AT hypoxia, inflammation and oxidative stress. Other factors such as systemic inflammation and lifestyle behaviours may also contribute to the disruption of AT redox equilibrium and exacerbate obesity-associated oxidative stress. 
  • 888
  • 18 Jun 2021
  • Page
  • of
  • 32