Topic Review
Vancouver Web Series Festival
The Vancouver Web Series Festival, also known as the Vancouver Web Fest, is a web series festival based in Vancouver, British Columbia, Canada . It is known as the first ever Canadian festival dedicated solely to entertainment and programming created exclusively for the Internet. In 2017, IndieWire called the festival "one of the leading destinations for quality web content". Raindance dubbed it one of the "must attend" web series events for creators and fans of online content. The Province described the festival as "the future of broadcast."
  • 349
  • 06 Oct 2022
Topic Review
Sturm-Liouville Theory
In mathematics and its applications, a classical Sturm–Liouville equation, named after Jacques Charles François Sturm (1803–1855) and Joseph Liouville (1809–1882), is a real second-order linear differential equation of the form where y is a function of the free variable x. Here the functions p(x) > 0 has a continuous derivative, q(x), and w(x) > 0 are specified at the outset, and in the simplest of cases are continuous on the finite closed interval [a,b]. In addition, the function y is typically required to satisfy some boundary conditions at a and b. The function w(x), which is sometimes called r(x), is called the "weight" or "density" function. The value of λ is not specified in the equation; finding the values of λ for which there exists a non-trivial solution of (1) satisfying the boundary conditions is part of the problem called the Sturm–Liouville problem (S L). Such values of λ when they exist are called the eigenvalues of the boundary value problem defined by (1) and the prescribed set of boundary conditions. The corresponding solutions (for such a λ) are the eigenfunctions of this problem. Under normal assumptions on the coefficient functions p(x), q(x), and w(x) above, they induce a Hermitian differential operator in some function space defined by boundary conditions. The resulting theory of the existence and asymptotic behavior of the eigenvalues, the corresponding qualitative theory of the eigenfunctions and their completeness in a suitable function space became known as Sturm–Liouville theory. This theory is important in applied mathematics, where S–L problems occur very commonly, particularly when dealing with linear partial differential equations that are separable.
  • 349
  • 01 Dec 2022
Topic Review
Metaheuristic Approach for University Course Timetabling Problems
The university course timetabling problem (UCTP) is a multidimensional assignment problem that involves assigning students and teachers to events (or courses), which are then allocated to appropriate timeslots and rooms. The UCTP can be categorized into two categories: post-enrollment-based course timetabling problems (PE-CTPs) and curriculum-based course timetabling problems (CB-CTPs). 
  • 349
  • 09 Aug 2023
Topic Review
Fault Localization Using TrustRank Algorithm
Fault localization refers to the process of identifying the specific locations or program entities within a software system that are responsible for causing observed failures or errors. It involves analyzing various sources of information, such as execution traces, test cases, and program dependencies, to pinpoint the root causes of failures. The goal of fault localization is to narrow down the search space and provide developers with actionable insights to efficiently and effectively fix the identified faults. By accurately localizing faults, developers can save time and effort in debugging and troubleshooting software systems.
  • 349
  • 28 Nov 2023
Topic Review
Diffusion-Based Method for Pavement Crack Detection
Pavement crack detection is of significant importance in ensuring road safety and smooth traffic flow. However, pavement cracks come in various shapes and forms which exhibit spatial continuity, and algorithms need to adapt to different types of cracks while preserving their continuity. Some studies have already applied the feature learning capability of generative models to crack detection. 
  • 349
  • 01 Apr 2024
Topic Review
Computer (Job Description)
The term "computer", in use from the early 17th century (the first known written reference dates from 1613), meant "one who computes": a person performing mathematical calculations, before electronic computers became commercially available. Alan Turing described the "human computer" as someone who is "supposed to be following fixed rules; he has no authority to deviate from them in any detail." Teams of people, often women from the late nineteenth century onwards, were used to undertake long and often tedious calculations; the work was divided so that this could be done in parallel. The same calculations were frequently performed independently by separate teams to check the correctness of the results. Since the end of the 20th century, the term "human computer" has also been applied to individuals with prodigious powers of mental arithmetic, also known as mental calculators.
  • 348
  • 01 Nov 2022
Topic Review
Microsoft DoubleSpace FAT
DriveSpace (initially known as DoubleSpace) is a disk compression utility supplied with MS-DOS starting from version 6.0 in 1993 and ending in 2000 with the release of Windows Me. The purpose of DriveSpace is to increase the amount of data the user could store on disks by transparently compressing and decompressing data on-the-fly. It is primarily intended for use with hard drives, but use for floppy disks is also supported. This feature was removed in Windows XP and later.
  • 348
  • 16 Nov 2022
Topic Review
Safety in Traffic Management Systems
Traffic management systems play a vital role in ensuring safe and efficient transportation on roads. However, the use of advanced technologies in traffic management systems has introduced new safety challenges. Therefore, it is important to ensure the safety of these systems to prevent accidents and minimize their impact on road users.
  • 348
  • 20 Oct 2023
Topic Review
Multispectral Facial Recognition in the Wild
Face recognition systems in uncontrolled environments have shown impressive performance improvements. However, most are limited to the use of a single spectral band in the visible spectrum. The use of multi-spectral images makes it possible to collect information that is not obtainable in the visible spectrum when certain occlusions exist (e.g., fog or plastic materials) and in low- or no-light environments. The state of the art regarding face recognition systems in an uncontrolled environment has led to the conclusion that image synthesis methods, mainly with GANs, have been used to combat intrapersonal variations, such as the difference in pose and facial expression. On the other hand, in the area of multispectral face recognition, with a plurality of solutions presented by the use of multispectral images, fusion methods are those that make the most use of images captured in different spectral bands in order to make a decision. The main problem encountered is the limited number of images (and people) in multispectral databases in an uncontrolled environment, which makes it challenging to train convolutional neural networks, which are the most used method for feature extraction.
  • 347
  • 25 Aug 2022
Topic Review
Sleep Spindle
Sleep spindles are bursts of neural oscillatory activity that are generated by interplay of the thalamic reticular nucleus (TRN) and other thalamic nuclei during stage 2 NREM sleep in a frequency of ~10 –12 Hz for at least 0.5 seconds. After generation in the TRN, spindles are sustained and relayed to the cortex by a thalamo-thalamic and thalamo-cortical feedback loops regulated by both GABAergic and NMDA-receptor mediated glutamatergic neurotransmission. Sleep spindles have been found in all tested mammalian species and in vitro cells. Research supports that spindles (sometimes referred to as "sigma bands" or "sigma waves") play an essential role in both sensory processing and long term memory consolidation. Until recently, it was believed that each sleep spindle oscillation peaked at the same time throughout the neocortex. It was determined that oscillations sweep across the neocortex in circular patterns around the neocortex, peaking in one area, and then a few milliseconds later in an adjacent area. It has been suggested that this spindle organization allows for neurons to communicate across cortices. The time scale at which the waves travel at is the same speed it takes for neurons to communicate with each other.
  • 347
  • 12 Oct 2022
  • Page
  • of
  • 366
ScholarVision Creations