Topic Review
All-Dielectric Metasurface for Sensing Microcystin-LR
Microcystin is a kind of biotoxin widely found in freshwater bodies across the world. It is one of the indicators of water eutrophication which makes water consumption harmful to human beings. Microcystin can inhibit the production of protein phosphatase in cells and exposure to microcystin can severely damage organs, including liver, intestines, lungs, and kidneys. There are many variants of microcystin, such as MC-LR, MC-RR, and MC-YR (L, R, and Y stand for leucine, arginine, and tyrosine, respectively). Among them, MC-LR is the most common and the most toxic variant. 
  • 480
  • 21 Jun 2021
Topic Review
Allying Meta-Structures with Diverse Optical Waveguides for Integrated-Photonics
Recent years have witnessed tremendous interest in synergizing various functional subwavelength structures into diverse optical waveguide platforms to enable versatile photonic meta-devices. The advancement of meta-waveguides not only extends meta-optics into the manipulation of guided wave, but may also reshape the landscapes of photonic integrated circuits and massive emergent applications. A recent review paper outlined latest progress on meta-waveguides-based photonics devices and systems. Both forward and inverse designed scenarios are cataloged showcasing vibrant opportunities.
  • 1.0K
  • 13 Dec 2021
Topic Review
Alternating Current Loss of Superconductors
Alternating current (AC) loss is generated due to the movement of magnetic vortices within the superconductor when experiencing time-varying currents or magnetic fields (or both). AC loss can be categorized into transport current loss and magnetization loss based on the AC source. Particularly, when a superconductor carries a direct current (DC) and is simultaneously exposed to an AC field, dynamic resistance occurs and leads to dynamic loss. Quantification and minimization of AC loss are crucial because the produced heat can not only present severe challenges to the cryogenic systems but also impair the reliability of superconducting devices, leaving a safety hazard. To quantify the AC loss of superconductors, analytical formulae, numerical models, and experimental measurements have been widely adopted. Concerning AC loss minimization techniques, the modification of superconductor structures (filamentation and twisting), flux diverters, as well as winding techniques have been widely exploited. This entry serves to clarify the characteristics and quantification methods of AC loss as well as its minimization techniques in superconductors. It is believed to help deepen the understanding of AC loss and deliver a helpful guideline for future research efforts.
  • 6.6K
  • 14 Sep 2021
Topic Review
Amperometric Biosensors
Amperometric biosensors utilizing oxidoreductases were classified into three generations: 1st generation biosensors employing oxidases based on the electrocatalytic monitoring of substrate consumption or product formation, 2nd generation biosensors employing oxidases or dehydrogenases based on the electrocatalytic recycling of suitable redox mediators, and 3rd generation biosensors employing oxidoreductases capable of direct electron transfer to bare or modified electrodes.
  • 3.7K
  • 16 Aug 2021
Topic Review
Apollo Energy Systems
Apollo Energy Systems is a U.S. multinational alternative energy corporation headquartered in Pompano Beach, Florida, that develops, produces, and markets fuel cell power plants, electric propulsion systems, and alternative energy generation equipment. The company was founded by Robert R. Aronson in 1966 as the Electric Fuel Propulsion Corporation (EFP) in New Orleans, Louisiana. It later became known as the Electric Auto Corporation (EAC), and in 2001 changed to Apollo Energy Systems.
  • 296
  • 16 Nov 2022
Topic Review
Apple Cinema Display
The Apple Cinema Display is a line of flat-panel computer monitors developed and sold by Apple Inc. between 1999 and 2011. It was initially sold alongside the older line of Studio Displays, but eventually replaced them. Apple offered 20-, 22-, 23-, 24-, 27- and 30-inch sizes, with the last model being a 27-inch size with LED backlighting. There have been three designs for the Cinema Display, one featuring polycarbonate plastic and two featuring anodized aluminum. The first displays were designed to match the colorful plastic of the Power Mac G3 and later the Power Mac G4, while the second revisions were designed to match the aluminum aesthetics of the Power Mac G5 and PowerBook G4. The last available design matched the unibody laptops released in October 2008. The Apple Cinema Display name was retired in July 2011 with the introduction of the Apple Thunderbolt Display, and the Cinema Display models were no longer offered on the Apple Store website as of August 2014.
  • 600
  • 05 Dec 2022
Topic Review
Apple Electric Car Project
The Apple electric car project (codenamed "Titan") is an electric car project undergoing research and development by Apple Inc. Apple has yet to openly discuss any of its self-driving research, but around 5,000 employees were reported to be working on the project (As of 2018). In May 2018, Apple reportedly partnered with Volkswagen to produce an autonomous employee shuttle van based on the T6 Transporter commercial vehicle platform. In August 2018, the BBC reported that Apple had 66 road-registered driverless cars, with 111 drivers registered to operate those cars. In 2020, it is believed that Apple is still working on self driving related hardware, software and service as a potential product, instead of actual Apple-branded cars. In December 2020, Reuters reported that Apple was planning on a possible launch date of 2024, but analyst Ming-Chi Kuo claimed it would not be launched before 2025 and might not be launched until 2028 or later.
  • 572
  • 11 Oct 2022
Topic Review
Application of Additional Conductive Layers
Polymer composites are at increasingly used as structural materials replacing metal alloys due to their high strength-to-weight ratio and corrosion resistance. The conductivity of epoxy resin, depending on its type, ranges from 10−17 to 10−12 S/cm, so it is classified as an insulator, i.e., a material with a conductivity below 10−12 S/cm, while carbon fiber is about 6 × 102 S/cm, which allows it to be classified as a semiconductor, i.e., a material whose conductivity is between 10−12 and 103 S/cm. The EP/CF composite, on the other hand, has a conductivity of about 10−4–10−2 S/cm, that is, it also classifies as a semiconductor. The methods to improve the conductivity have been categorized into three groups: modification of the matrix with conductive fillers, modification of the composite reinforcement, and addition of layers with increased electrical conductivity to the composite. 
  • 477
  • 19 Jul 2022
Topic Review
Application of Optical Fibers in Temperature Monitoring
The current generation is witnessing a huge interest in optical waveguides due to their salient features: they are of low cost, immune to electromagnetic interference, easy to multiplex, have a compact size, etc. These features of optical fibers make them a useful tool for various sensing applications including in medicine, automotives, biotechnology, food quality control, aerospace, physical and chemical monitoring. Among all the reported applications, optical wave guides have been widely exploited to measure the physical and chemical variations in the surrounding environment. Optical fiber-based temperature sensors have played a crucial role in this decade to detect high fever and tackle COVID-19-like pandemics. Recognizing the major developments in the field of optical fibers, this entry provides recent progress in temperature sensors utilizing several sensing configurations including conventional fiber, photonic crystal fiber, and Bragg grating fibers. Additionally, this entry also highlights the advantages, limitations, and future possibilities in this area.
  • 755
  • 08 Mar 2023
Topic Review
Application of Radio Frequency Identification in IoT Field
RFID (radio frequency identification) technology appeared nearly 70 years ago. Deployed more widely only from the early 2000s, it is now booming and its development is still accelerating. As its name indicates, its original function was the identification (of objects, animals, people) and its applications were then essentially aimed at traceability, access control and logistics. If this type of use is still relevant today with more and more new application contexts and more and more efficient RFID tags, RFID has also evolved by integrating new capabilities. These new tags, known as augmented tags, include an information capture function. With the explosion of connected objects and the emergence of the Internet of Things (IoT), this old technology that is RFID still has a promising future and will probably be more and more present in our private and professional environments in all fields: logistics, industry, agriculture, building, health and even space.
  • 436
  • 14 Nov 2022
  • Page
  • of
  • 99
Video Production Service