Topic Review
Degree of Ambition and Renewable Energy in Shipping
The early strategy outlines various degrees of desire for the international shipping industry, stressing that technical advancement and the international introduction of alternative fuels and/or renewable energies for international shipping will be crucial to achieving the overall aim. Renewable energy can be implemented in shipping in one of two ways: (1) as retrofits for current fleets or (2) as part of new vessel designs. In terms of new ship concepts, most renewable energy technology will deliver electricity for auxiliary and additional uses, regardless of ship size.
  • 1.3K
  • 14 Nov 2022
Topic Review
Technologies for Railway Track Maintenance
Inspection and repair interventions play vital roles in the asset management of railways. Autonomous mobile manipulators possess considerable potential to replace humans in many hazardous railway track maintenance tasks with high efficiency and increased asset utilization. Railway track maintenance technologies ranges from handheld devices to whole train, from manually pushed trolley to autonomous robots. 
  • 1.3K
  • 02 Jun 2023
Topic Review
Field Robots for Intelligent Farms
Field robots for use in intelligent farms can be of two types: mobile robots, capable of moving throughout the working field, and manipulators, normally attached to mobile robots and capable of performing some types of actions on crops. Mobile robots can be unmanned ground robots or unmanned aerial robots, whereas manipulators can follow diverse techniques that provide different characteristics: (1) rigid manipulators; (2) soft manipulators; (3) parallel robots; (4) dual-arm manipulators; (5) redundant, hyperredundant, or continuum manipulators; etc 
  • 1.3K
  • 20 Nov 2020
Topic Review
Haptic Assistive Driving Systems with Human Operators
With the availability of modern assistive techniques, ambient intelligence, and the Internet of Things (IoT), various innovative assistive environments have been developed, such as driving assistance systems (DAS), where the human driver can be provided with physical and emotional assistance. In this human–machine collaboration system, haptic interaction interfaces are commonly employed because they provide drivers with a more manageable way to interact with other components. From the view of control system theory, this is a typical closed-loop feedback control system with a human in the loop. To make such a system work effectively, both the driving behaviour factors, and the electrical–mechanical components should be considered. However, the main challenge is how to deal with the high degree of uncertainties in human behaviour. 
  • 1.2K
  • 19 Jul 2022
Topic Review
Alarming Systems for Hazardous Gases and Volatile Chemicals
The leakage of hazardous gases and chemical vapors is considered one of the dangerous accidents that can occur in laboratories, workshops, warehouses, and industrial sites that use or store these substances. The early detection and alarming of hazardous gases and volatile chemicals are significant to keep the safety conditions for the people and life forms who are work in and live around these places.
  • 1.2K
  • 15 Dec 2021
Topic Review
Traditional Visual Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) was first applied in the field of robotics. Its goal is to build a real-time map of the surrounding environment based on sensor data without any prior knowledge, and at the same time predict its own location based on the map. SLAM has attracted extensive attention from many researchers since it was first proposed in 1986 and is now a necessary capability for autonomous mobile robots.
  • 1.2K
  • 04 Jul 2022
Topic Review
Software-Defined Protection, Automation, and Control in Power Systems
Power systems’ Protection, Automation, and Control (PAC) functionalities are often deployed in different constrained devices (Intelligent Electronic Devices) following a coupled hardware/software design. With the increase in distributed energy resources, more customized controllers will be required. These devices have high operational and deployment costs with long development, testing, and complex upgrade cycles. Addressing these challenges requires that a ’revolution’ in power system PAC design takes place. Decoupling from hardware-dependent implementations by virtualizing the functionalities facilitates the transition from a traditional power grid into a software-defined smart grid.
  • 1.2K
  • 21 Dec 2022
Topic Review
Latency Compensated Visual-Inertial Odometry
In visual-inertial odometry (VIO), inertial measurement unit (IMU) dead reckoning acts as the dynamic model for flight vehicles while camera vision extracts information about the surrounding environment and determines features or points of interest. With these sensors, the most widely used algorithm for estimating vehicle and feature states for VIO is an extended Kalman filter (EKF). The design of the standard EKF does not inherently allow for time offsets between the timestamps of the IMU and vision data. In fact, sensor-related delays that arise in various realistic conditions are at least partially unknown parameters. A lack of compensation for unknown parameters often leads to a serious impact on the accuracy of VIO systems and systems like them. To compensate for the uncertainties of the unknown time delays, this study incorporates parameter estimation into feature initialization and state estimation. Moreover, computing cross-covariance and estimating delays in online temporal calibration correct residual, Jacobian, and covariance. Results from flight dataset testing validate the improved accuracy of VIO employing latency compensated filtering frameworks. The insights and methods proposed here are ultimately useful in any estimation problem (e.g., multi-sensor fusion scenarios) where compensation for partially unknown time delays can enhance performance.
  • 1.2K
  • 29 Apr 2021
Topic Review
Lower Limb Joint Kinematics
The use of inertial measurement units (IMUs) has gained popularity for the estimation of lower limb kinematics. However, implementations in clinical practice are still lacking. This review shows that methods for lower limb joint kinematics are inherently application dependent. Sensor restrictions are generally compensated with biomechanically inspired assumptions and prior information. Awareness of the possible adaptations in the IMU-based kinematic estimates by incorporating such prior information and assumptions is necessary, before drawing clinical decisions. Future research should focus on alternative validation methods, subject-specific IMU-based biomechanical joint models and disturbed movement patterns in real-world settings.
  • 1.1K
  • 01 Nov 2020
Topic Review
Single-Coil Eddy Current Sensors
The single-coil eddy current sensors (SCECS) constitute a separate and independent branch among the eddy current sensors. The SCECS sensing element is a single current loop that can be inserted into the measuring zone with harsh and extreme conditions. Such simplicity of the SCECS design ensures sensors’ functioning at high temperatures, reaching 1200 °C and more in gas turbines, high linear speeds of the monitored objects, contamination of the measuring medium by fuel combustion products, vibrations, etc. The main application of the SCECS related to the monitoring the dangerous states of the power plants. The sensors and their cluster compositions make it possible to evaluate a wide range of power plants diagnostic parameters, including radial clearances between the blade tips and the stator of the compressor and turbine of the gas-turbine engine, shaft displacements in the radial thrust bearings, the presence of wear particles of friction pairs in oil system, etc.
  • 1.1K
  • 01 Nov 2020
  • Page
  • of
  • 18
ScholarVision Creations