Topic Review
Antidepressant Effects of Ayahuasca in Humans
Ayahuasca is a psychedelic preparation usually made by the decoction of Banisteriopsis caapi and Psychotria viridis, or Diplopterys cabrerana, plants endemic to the Amazonian Basin where the brew is traditionally used in ritualistic contexts. B. caapi is known to contain a class of substances called β-carbolines or harmala alkaloids, mainly harmine, tetrahydroharmine (THH), and harmaline. These substances are known to selectively and reversibly inhibit the enzyme monoamine oxidase type A (MAO-A), which is believed to be their main mechanism of action. On the other hand, P. viridis is a source of dimethyltryptamine (DMT), a serotoninergic psychedelic belonging to the same pharmacological class of substances as lysergic acid diethylamide (LSD) and psilocybin. The main mechanism of action for DMT and related psychedelic substances is widely accepted to be agonism at the serotonin receptors 5-HT1A,2A,2C, with the 2A subtype being the primary molecular target and its activation dose-dependently related to the psychoactive effects these substances cause. 
  • 574
  • 11 Nov 2022
Topic Review
Antidepressant-like Effect of Flavonoids
Depressive disorders are among the most disabling diseases experienced around the world. The search for new pharmacological alternatives to treat depression is a global priority. In preclinical research, molecules obtained from plants, such as flavonoids, have shown promising antidepressant-like properties through several mechanisms of action that have not been fully elucidated, including crossing of the blood brain barrier (BBB). 
  • 553
  • 23 Sep 2022
Topic Review
Antidepressants and Circadian Rhythm
Circadian oscillations alter drug absorption, distribution, metabolism, and excretion (ADME) as well as intracellular signaling systems, target molecules (e.g., receptors, transporters, and enzymes), and gene transcription. There is a positive influence of drug dosing-time on the efficacy of depression therapy. On the other hand, antidepressants have also demonstrated to modulate circadian rhythmicity and sleep–wake cycles. 
  • 1.0K
  • 23 Dec 2021
Topic Review
Antidepressants Fluoxetine and Fluvoxamine in Treatment of COVID-19
Mapping non-canonical cellular pathways affected by approved medications can accelerate drug repurposing efforts, which are crucial in situations with a global impact such as the COVID-19 pandemic. Fluoxetine and fluvoxamine are well-established and widely-used antidepressive agents that act as serotonin reuptake inhibitors (SSRI-s). Interestingly, these drugs have been reported earlier to act as lysosomotropic agents, inhibitors of acid sphingomyelinase in the lysosomes, and as ligands of sigma-1 receptors, mechanisms that might be used to fight severe outcomes of COVID-19. In certain cases, these drugs were administered for selected COVID-19 patients because of their antidepressive effects, while in other cases, clinical studies were performed to assess the effect of these drugs on treating COVID-19 patients. Clinical studies produced promising data that encourage the further investigation of fluoxetine and fluvoxamine regarding their use in COVID-19.
  • 422
  • 08 Apr 2022
Topic Review
Antidiabetic Drugs in the Treatment of Alzheimer’s Disease
The public health burden of type 2 diabetes mellitus and Alzheimer’s disease is steadily increasing worldwide, especially in the population of older adults. Epidemiological and clinical studies suggest a possible shared pathophysiology between the two diseases and an increased risk of AD in patients with type 2 diabetes mellitus. Therefore, in recent years, there has been a substantial interest in identifying the mechanisms of action of antidiabetic drugs and their potential use in Alzheimer’s disease. Human studies in patients with mild cognitive impairment and Alzheimer’s disease have shown that administration of some antidiabetic medications, such as intranasal insulin, metformin, incretins, and thiazolidinediones, can improve cognition and memory. 
  • 517
  • 14 Apr 2023
Topic Review
Antidiabetic Effect of Gymnema montanum/Momordica charantia/Moringa oleifera
Gymnema montanum (G. montanum, GM) is a plant belonging to Apocynaceae family, an endemic, woody climbing shrub found mainly in Africa and India. Momordica charantia (M. charantia, MC), a plant belonging to the Cucurbitaceae family, is commonly known as a bitter gourd, balsam pear, bitter melon, or Karela and could be found in India, Japan, Singapore, Vietnam, Cuba, Ghana, Haiti, the Middle East, Central and South America and many other regions. Moringa oleifera (M. oleifera, MO) Lam is a plant that belongs to the Moringaceae family and naturally occurs widely in many tropical and subtropical areas. The extracts of Gymnema montanum, Momordica charantia and Moringa oleifera represent a promising and attractive source of phytochemicals with proven antidiabetic and antioxidant activity in rat models of diabetes. They increase pancreatic insulin and insulin sensitivity in peripheral tissues, reduce insulin resistance and hepatic gluconeogenesis, and have a modulatory effect on glycolysis, gluconeogenesis and antihyperlipidemic properties. All three extracts reduced oxidative stress and revealed antiperoxidative features to protect β-cells against ROS. They are, therefore, good candidates for the management and treatment of diabetes in mammals, especially humans. Moreover, all three plants have been widely used in traditional medicine.
  • 872
  • 29 Mar 2022
Topic Review
Antidiabetic Medications and Cancer
In the last decade, cancer became the leading cause of death in the population under 65 in the European Union. Diabetes is also considered as a factor increasing risk of cancer incidence and mortality. Type 2 diabetes is frequently associated with being overweight and obese, which also plays a role in malignancy. Among biological mechanisms linking diabetes and obesity with cancer hyperglycemia, hyperinsulinemia, insulin resistance, increased levels of growth factors, steroid and peptide hormones, oxidative stress and increased activity of pro-inflammatory cytokines are listed. Antidiabetic medications can modulate cancer risk through directly impacting metabolism of cancer cells as well as indirectly through impact on risk factors of malignancy. Some of them are considered beneficial (metformin and thiazolidinedions—with the exception of bladder cancer); on the other hand, excess of exogenous insulin may be potentially harmful, while other medications seem to have neutral impact on cancer risk. Inhibitors of the sodium-glucose cotransporter-2 (SGLT-2) are increasingly used in the treatment of type 2 diabetes. However, their association with cancer risk is unclear. 
  • 531
  • 22 Sep 2021
Topic Review
Antidiabetic Potential of Medicinal Plants
Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. 
  • 678
  • 04 Aug 2021
Topic Review
Antidiabetic Potentials of Bangladeshi Fruits
Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). The antidiabetic potential of commonly available Bangladeshi fruits and other plant parts are discussed, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. 
  • 617
  • 23 Dec 2022
Topic Review
Antidiabetic Properties of Curcumin I
Type 2 diabetes mellitus (T2DM) is a growing metabolic disease characterized by insulin resistance and hyperglycemia. Current preventative and treatment strategies for T2DM and insulin resistance lack in efficacy resulting in the need for new approaches to prevent and manage/treat the disease better. In recent years, epidemiological studies have suggested that diets rich in fruits and vegetables have beneficial health effects including protection against insulin resistance and T2DM. Curcumin, a polyphenol found in turmeric, and curcuminoids have been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, immunomodulatory and antidiabetic properties. Here we are summarizing the existing in vitro studies examining the antidiabetic effects of curcumin.
  • 1.4K
  • 29 Oct 2020
  • Page
  • of
  • 1352
ScholarVision Creations