Topic Review
Let-7e Differentiates Stress-Resilient from Susceptible
Three strains of mice with various susceptibilities to restraint stress (RS), i.e., mice with a knocked out norepinephrine transporter gene (NET-KO), SWR/J and C57BL/6J (WT) mice were shown to serve as a good model to study the molecular mechanisms underlying different stress-coping strategies. We identified 14 miRNAs that were altered by RS in the PFC of these mice in a genotype-dependent manner, where the most interesting was let-7e. Further in silico analysis of its potential targets allowed us to identify five mRNAs (Bcl2l11, Foxo1, Pik3r1, Gab1 and Map2k4), and their level alterations were experimentally confirmed. A next-generation sequencing (NGS) approach, which was employed to find transcripts differentially expressed in the PFC of NET-KO and WT mice, showed that, among others, two additional mRNAs were regulated by mmu-let-7e, i.e., mRNAs that encode Kmt2d and Inf2. Since an increase in Bcl2l11 and Pik3r1 mRNAs upon RS in the PFC of WT mice resulted from the decrease in mmu-let-7e and mmu-miR-484 regulations, we postulated that MAPK, FoxO and PI3K-Akt signaling pathways were associated with stress resilience, although via different, genotype-dependent regulation of various mRNAs by let-7e and miR-484. However, a higher level of Kmt2d mRNA (regulated by let-7e) that was found with NGS analysis in the PFC of NET-KO mice indicated that histone methylation was also important for stress resilience. 
  • 337
  • 22 Sep 2021
Topic Review
Laundry Enzyme
Laundry enzyme is one type of biological enzymes that are frequently used in the laundry industry, and also it is still the largest industrial enzyme application and thus the laundry enzyme plays a significant role in helping both household laundry and the relative industrial business. Laundry enzymes are sub-class of enzymes, and thus they are also biological catalysts with poly-molecular structure. They usually exist as little blue particles or flecks in both liquid and powder detergents, and once contacting with water they dissolve rapidly, by acting as a catalyst, the laundry enzymes boost the rate of the reaction between stains and aqueous solution. Therefore, laundry enzymes are good at stain removal. The addition of laundry enzymes in detergent products improves laundry efficiency and also makes the process more environmentally friendly, and thus detergent manufacturers are willing to update the products with laundry enzyme formula added. With the consumers' high interest in new bio-technique gradually growing, laundry enzyme detergents are becoming more and more popular in the globe, which reveals the success of laundry enzyme's application in the industry. However, there are still several concerns from consumers brought by laundry enzymes such as the potential allergies and cloth damages, but the experimental result shows the concerns are unnecessary.
  • 857
  • 10 Nov 2022
Topic Review
LAG3
Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. LAG3, which was discovered in 1990 and was designated CD223 (cluster of differentiation 223) after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, is a cell surface molecule with diverse biologic effects on T cell function. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right.
  • 760
  • 02 Nov 2022
Topic Review
Lactic Acidosis’ Effect on Energy Metabolism
Lactic acidosis, a hallmark of solid tumour microenvironment, originates from lactate hyperproduction and its co-secretion with protons by cancer cells displaying the Warburg effect. Long considered a side effect of cancer metabolism, lactic acidosis is now known to play a major role in tumour physiology, aggressiveness and treatment efficiency. 
  • 653
  • 07 Mar 2023
Topic Review
Lactadherin in Cancer Development and Progression
Lactadherin is a secreted glycoprotein associated with the milk fat globule membrane, which is highly present in the blood and in the mammary tissue of lactating women. Several biological functions have been associated with this protein, mainly attributable to its immunomodulatory role promoting phagocyte-mediated clearance of apoptotic cells. It has been shown that lactadherin also plays important roles in cell adhesion, promotion of angiogenesis, and tissue regeneration. On the other hand, this protein has been used as a marker of breast cancer and tumor progression. Recently, high levels of lactadherin has been associated with poor prognosis and decreased survival, not only in breast cancer, but also in melanoma, ovarian, colorectal, and other types of cancer. Although the mechanisms responsible for the tumor-promoting effects attributed to lactadherin have not been fully elucidated, a growing body of literature indicates that lactadherin could be a promising therapeutic target and/or biomarker for breast and other tumors. Moreover, recent studies have shown its presence in extracellular vesicles derived from cancer cell lines and cancer patients, which was associated with cancer aggressiveness and worse prognosis. 
  • 522
  • 31 May 2022
Topic Review
L-Lactate
l-Lactate plays a role as a metabolic and signaling molecule, accordingly, Vaccari-Cardoso and co-workers developed a viral vector to express a modified version of lactate oxidase (LOx) originating from the bacteria Aerococcus viridans. Their results in vitro show that LOx expression in astrocytes reduced their intracellular lactate levels and its release to the extracellular space.
  • 625
  • 07 Oct 2021
Topic Review
L-Aspartate
L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense.
  • 1.3K
  • 16 Apr 2021
Topic Review
L-Arginine Metabolism in Cancer
L-Arginine plays a crucial role in detoxification of ammonia—a protein breakdown product acts as a secretagogue and serves as a substrate for the synthesis of NO, an important signaling molecule that regulates vascular tone and cytotoxic functions of macrophages. L-Arg is also a precursor in the synthesis of L-ornithine and agmatine, creatine and polyamines. Metabolism of L-Arg is involved in immune cell regulation. It is now clear that L-Arg metabolism is engaged in the pathogenesis of tumor growth, inflammation, infectious diseases, and fibrotic processes, as well as physiological immunodeficiencies in newborns and pregnant women. 
  • 197
  • 21 Sep 2023
Topic Review
Krüppel-like Factors 4 and 5 in Colorectal Tumorigenesis
Krüppel-like factors (KLFs) are transcription factors regulating various biological processes such as proliferation, differentiation, migration, invasion, and homeostasis. Importantly, they participate in disease development and progression. KLFs are expressed in multiple tissues, and their role is tissue- and context-dependent. KLF4 and KLF5 are two fascinating members of this family that regulate crucial stages of cellular identity from embryogenesis through differentiation and, finally, during tumorigenesis. They maintain homeostasis of various tissues and regulate inflammation, response to injury, regeneration, and development and progression of multiple cancers such as colorectal, breast, ovarian, pancreatic, lung, and prostate, to name a few.
  • 272
  • 12 Sep 2023
Topic Review
KRAS
The RAS family consists of membrane-associated small GTPases which play essential roles in cell survival, proliferation, and differentiation. There are four RAS protein isoforms in humans: HRAS, NRAS, and two splice variants, KRAS4A and KRAS4B. 
  • 846
  • 12 Oct 2021
  • Page
  • of
  • 161
ScholarVision Creations