Topic Review
Proteolysis-Targeting Chimeras
The ubiquitin–proteasome system (UPS) is an essential part of the cellular machinery responsible for maintaining intracellular protein homeostasis. A network of proteins that comprises the proteolytic system and chaperones calculates cellular protein homeostasis. Chaperones are in charge of correcting protein misfolding, but the proteolytic system, which converges on the 26S proteasome, is in charge of removing damaged or unfolded proteins to maintain a healthy environment inside the cell. Using proteolysis-targeting chimera (PROTAC) technology for targeted protein degradation, a novel technique of treatment is emerging that stems from an aberrant expression of a protein that causes disease. PROTAC molecules are tiny, bifunctional molecules that bind an E3-ubiquitin ligase and a target protein at the same time, causing ubiquitination and proteasome destruction of the target protein.
  • 530
  • 22 May 2023
Topic Review
Perspectives of Metabolic Syndrome-Related Organoids
Organoids are spontaneously formed multicellular structures that provide a reliable model for studying early development and certain diseases. MetS is a systemic disease that affects multiple organs and tissues throughout the human body. A single organoid is not a good model for studying metabolic syndrome, as it lacks the organ-to-organ and system-to-system interactions necessary to study the disease. Secondly, the current immaturity of organoids and the inability to produce them on a large scale and in a standardized manner have created significant limitations for the study of various diseases, especially systemic diseases such as Mets. However, the combination of organoids with other technologies is expected to break the metabolic syndrome research bottleneck. 
  • 267
  • 22 May 2023
Topic Review
Functions of Organelle Membrane Extensions in Mammalian Cells
Within cells, there are numerous compartments called ‘organelles’ that perform a range of specialised functions required to support life. Organelles are constantly adapting to their environment, changing shape and cooperating with each other depending on the cellular needs, which is essential for cell health as defects in these processes lead to human diseases. Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. 
  • 197
  • 22 May 2023
Topic Review
The Functions of NRF2 in Carcinogenesis and Cancer
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2)-KEAP1 system is the master regulator of cellular redox and metabolic homeostasis. NRF2 has Janus-like roles in carcinogenesis and cancer development. Short-term NRF2 activation suppresses tissue injury, inflammation, and cancer initiation.
  • 246
  • 19 May 2023
Topic Review
PGC-1α and Mitochondria
Mitochondria play a major role in ROS production and defense during their life cycle. The transcriptional activator PGC-1α is a key player in the homeostasis of energy metabolism and is therefore closely linked to mitochondrial function. PGC-1α responds to environmental and intracellular conditions and is regulated by SIRT1/3, TFAM, and AMPK, which are also important regulators of mitochondrial biogenesis and function.
  • 487
  • 18 May 2023
Topic Review
Regulatory T Cells in Primary Sjögren’s Syndrome
Regulatory T cells (Tregs) play a key role in maintaining immune balance and regulating the loss of self-tolerance mechanisms in various autoimmune diseases, including primary Sjögren’s syndrome (pSS). With the development of pSS primarily in the exocrine glands, lymphocytic infiltration occurs in the early stages, mainly due to activated CD4+ T cells.
  • 441
  • 15 May 2023
Topic Review
Cancer Stem Cells
Cancer Stem Cells (CSCs) is a subset of cancer cells with the ability to self-renew and to differentiate into non-CSC cancer cells within the tumor mass. The CSC field was shaped by great research done on hematopoietic stem cells (HSCs). HSCs are hierarchically arranged with HSCs being the founder cells that undergo asymmetric cell division giving rise to differentiated daughter cells and one quiescent stem cell with self-renewal abilities. CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. CSCs have been characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane drug transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting.
  • 1.2K
  • 15 May 2023
Topic Review
Chemokine Regulation in Temporomandibular Joint Disease
Temporomandibular joint disorders (TMDs) are conditions that affect the muscles of mastication and joints that connect the mandible to the base of the skull. Although TMJ disorders are associated with symptoms, the causes are not well proven. Chemokines play an important role in the pathogenesis of temporomandibular joint (TMJ) disease by promoting chemotaxis inflammatory cells to destroy the joint synovium, cartilage, subchondral bone, and other structures. 
  • 367
  • 15 May 2023
Topic Review
Types of Senescent Cells in Cardiovascular Diseases
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. 
  • 324
  • 12 May 2023
Topic Review
Galectin-3 Targeting Drugs in Various Diseases
Galectin-3 (Gal3) is one of the most studied members of the galectin family that mediate various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Since Gal3 is pro-inflammatory, it is involved in many diseases that are associated with chronic inflammation such as cancer, organ fibrosis, and type 2 diabetes.
  • 317
  • 12 May 2023
  • Page
  • of
  • 161
Video Production Service