Topic Review
RNA-Binding Protein Rbm24
Rbm24 (RNA-binding motif protein 24) is an evolutionarily conserved RBP that contains a single RNA recognition motif (RRM) at its N-terminal region [13–15]. It exhibits strongly restricted tissue-specific expression patterns during vertebrate development [16], and emerges as an important regulator of cellular differentiation and a potential factor implicated in human disease. Rbm24 gene exhibits strongly conserved expression in the somites, heart, lens and otic vesicle of all vertebrate embryos. It is involved in different aspects of post-transcriptional regulation of gene expression, including pre-mRNA alternative splicing, mRNA stability and polyadenylation. Knockout of this gene in mice and zebrafish causes severe developmental defects, such as heart malformations, cataract formation and hearing deficits.
  • 602
  • 27 Oct 2020
Topic Review
Phenylketonuria and Hereditary Tyrosinemia
Phenylalanine hydroxylase (PAH) and fumarylacetoacetate hydroxylase (FAH) are two highly regulated liver enzymes that catalyze the rate-limiting step in phenylalanine and tyrosine metabolism. Mammalian PAH (phenylalanine 4-monooxygenase, E.C. 1.14.16.1) catalyzes the stereospecific hydroxylation of L-phenylalanine into L-tyrosine using tetrahydrobiopterin (BH4), non-heme iron, and dioxygen as co-substrates in the cytosol of the liver and kidney. PAH facilitates oxidation of excess L-phenylalanine into carbon dioxide and water, and is the major enzyme degrading 75% of L-phenylalanine from the diet. PAH assembles as a homotetrameric protein, each subunit composed of N-terminal regulatory domain for allosteric activation by Phe, a central catalytic domain, and C-terminal helix responsible for tetramer formation.
  • 870
  • 27 Oct 2020
Topic Review
Mastocytosis
Mastocytosis is a heterogeneous group of rare diseases defined by abnormal accumulation of clonal mast cells (MC) in the skin, bone marrow and/or other visceral organs.
  • 989
  • 27 Oct 2020
Topic Review
JNK1 and Brain Development
c-Jun NH2-terminal Kinases (JNKs), also known as Stress-Activated Protein Kinases, are a group of stimuli-response enzyme members of the Mitogen-Activated Protein Kinase (MAPK) family. Proper neuronal development is essential to the correct functioning of brain networks and connections. Due to its biological relevance, brain development is a controlled process that includes multiple regulatory pathways and mechanisms.
  • 492
  • 27 Oct 2020
Topic Review
TCTP, Cell Biology and Disease
Translationally controlled tumour protein (TCTP) is multifunctional protein expressed in essentially all eukaryotic organisms. It is a cytoprotective protein that is involved in many basic biological processes, such as cellular stress responses, growth and development. Dysregulation of TCTP occurs in various disease processes, and recently the participation of TCTP in several cancer-promoting pathways has been unveiled. Understanding the core biological functions of TCTP, the mechanisms underlying its cellular regulation and its participation in disease processes is essential for the design of effective anti-cancer strategies that may involve targeting of TCTP.  To provide a current overview of the knowledge in this area, we published a review article in Cells, which represents a detailed compilation of the recent progress in this field . Here, we give a brief overview on the core findings that are reported in this article.
  • 600
  • 27 Oct 2020
Topic Review
MTOR Signalling
In the liver, mTORC1, which consists of mTOR, mammalian lethal with Sec13 protein 8 (mLST8), Dishevelled, Egl-10 and Pleckstrin domain-containing mTOR-interacting protein (Deptor), regulatory-associated protein of mTOR (Raptor) and proline-rich protein kinase B (Akt) substrate (Pras40), is critical for controlling metabolic processes. 
  • 764
  • 27 Oct 2020
Topic Review
Osteoporosis Treatments
A healthy and active lifestyle is vital for the proper maintenance of all body tissues, including bone. Several studies have highlighted the importance of physical exercise to improve the quality of life of patients with osteoporosis. Diet also plays a fundamental role in bone health. Calcium supplementation is able to decrease the rate of bone mineral density loss in women, presenting even better results in combination with vitamin D. Lately, isoflavones has gain interest as a treatment in osteoporosis but their effectiveness still remains unclear. Therefore, pharmacological therapies have been developed to counteract bone fragility based on molecular targets. Therapies for osteoporosis are focus on restoring the normal balance between bone resorption and bone formation. Bone anti-resorptive therapies focus on the inhibition or reduction of bone resorption process, these are; estrogens, selective estrogen receptor modulators (SERMs), bisphosphonates and monoclonal antibodies. On the other hand, bone formation agents target anabolic pathways to stimulate the osteoblastic activity. This include Teriparatide, a recombinant human parathyroid hormone (PTH), and Romosozumab; an anti-sclerostin monoclonal antibody with dual effect.  It increases bone formation and, to a lesser extent, it reduces bone resorption (or bone loss) which translates into a decrease in the risk of fracture. In summary, currently used osteoporosis therapies are not fully effective in all patients and present considerable side effects that seriously compromise their long-term use. Thus, the development of new therapeutic strategies for osteoporosis is necessary in an increasingly aging world population. In this context, cell-based therapeutic strategies based on mesenchymal stem cells are positioning as encouraging possibilities to address osteoporosis.
  • 764
  • 27 Oct 2020
Topic Review
Cardiovascular Diseases and Stem Cells
This entry provides an update on previous and current research in the field of Cardiovascular diseases (CVDs), a class of disorders affecting the heart or blood vessels. Despite progress in clinical research and therapy, CVDs still represent the leading cause of mortality and morbidity worldwide. The hallmarks of cardiac diseases include inflammation, fibrosis, scar tissue, hyperplasia, hypertrophy, abnormal ventricular remodeling, and cardiomyocyte death, which is an irreversible process that induces heart failure with progressive and dramatic consequences. Both genetic and environmental factors pathologically contribute to the development of CVDs, but the precise causes that trigger cardiac diseases and their progression are still largely unknown. In this scenario, the possibility to generate patient-specific cardiac cells from induced pluripotent stem cells (iPSCs) represents a powerful platform for the investigation of these life-threatening disorders.
  • 978
  • 26 Oct 2020
Topic Review
Mesenchymal Cells for RP Therapy
Retinitis pigmentosa (RP) is a complex inherited retinal dystrophy currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Stem cells, especially mesenchymal cells represents a feasible therapeutic option in RP, limitating both oxidative stress and apoptotic processes triggered by the disease and promoting cell survival. 
  • 687
  • 26 Oct 2020
Topic Review
Oxidative Stress and Retinitis Pigmentosa
Degenerative retina in RP is exposed to high-level O2 and thereby damaged by ROS. Microglia as well as photoreceptor cells are injured by ROS. Oxidative microglial activation promotes microgliosis and photoreceptor cell death in RP. Oxidative DNA damage mediates MUTYH-SSBs-PARP signaling to induce microglial activation.
  • 705
  • 26 Oct 2020
  • Page
  • of
  • 161
Video Production Service