Topic Review
Stem Cell-Derived Extracellular Vesicles
Extracellular vesicles (EVs), which are the main paracrine components of stem cells, mimic the regenerative capacity of these cells. Stem cell-derived EVs (SC-EVs) have been used for the treatment of various forms of tissue injury in preclinical trials through maintenance of their stemness, induction of regenerative phenotypes, apoptosis inhibition, and immune regulation. The efficiency of SC-EVs may be enhanced by selecting the appropriate EV-producing cells and cell phenotypes, optimizing cell culture conditions for the production of optimal EVs, and further engineering the EVs produced to transport therapeutic and targeting molecules.
  • 702
  • 26 May 2021
Topic Review
Stem Cell Therapy for Diabetes
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders. In order to replace the function of the destroyed pancreatic beta cells in diabetes, islet transplantation is the most widely practiced treatment. However, it has several limitations. As an alternative approach, human pluripotent stem cells (hPSCs) can provide an unlimited source of pancreatic cells that have the ability to secrete insulin in response to a high blood glucose level. However, the determination of the appropriate pancreatic lineage candidate for the purpose of cell therapy for the treatment of diabetes is still debated. While hPSC-derived beta cells are perceived as the ultimate candidate, their efficiency needs further improvement in order to obtain a sufficient number of glucose responsive beta cells for transplantation therapy. On the other hand, hPSC-derived pancreatic progenitors can be efficiently generated in vitro and can further mature into glucose responsive beta cells in vivo after transplantation.
  • 471
  • 14 May 2021
Topic Review
Steatohepatitis, Mitochondria, and Inflammasome
Alcoholic (ASH) and nonalcoholic steatohepatitis (NASH) are advanced stages of fatty liver disease and two of the most prevalent forms of chronic liver disease. ASH and NASH are associated with significant risk of further progression to cirrhosis and hepatocellular carcinoma (HCC), the most common type of liver cancer, and a major cause of cancer-related mortality. Mitochondrial damage and activation of inflammasome complexes have a role in inducing and sustaining liver damage.
  • 277
  • 25 May 2022
Topic Review
Stathmins and Motor Neuron Diseases
Motor neuron diseases (MNDs) are a group of fatal, neurodegenerative disorders with different etiology, clinical course and presentation, caused by the loss of upper and lower motor neurons (MNs). MNs are highly specialized cells equipped with long, axonal processes; axonal defects are some of the main players underlying the pathogenesis of these disorders. Microtubules are key components of the neuronal cytoskeleton characterized by dynamic instability, switching between rapid polymerization and shrinkage. Proteins of the stathmin family affect microtubule dynamics regulating the assembly and the dismantling of tubulin. Stathmin-2 (STMN2) is one of the most abundantly expressed genes in MNs. Following axonal injury, STMN2 expression is upregulated, and the protein is transported toward the growth cones of regenerating axons. STMN2 has a critical role in axonal maintenance, and its dysregulation plays an important role in neurodegenerative processes. Stathmin-1 (STMN1) is a ubiquitous protein that is highly expressed during the development of the nervous system, and its phosphorylation controls microtubule dynamics.
  • 290
  • 01 Apr 2022
Topic Review
STAT3 Enhances Sensitivity of Glioblastoma to Cell Death
Glioblastoma is the most common primary brain cancer in adults. One reason for the development and malignancy of this tumor is the misregulation of certain cellular proteins. The oncoprotein Signal Transducer and Activator of Transcription (STAT3) that is frequently overactive in glioblastoma cells is associated with more aggressive disease and decreased patient survival. Autophagy is a form of cellular self digestion that normally maintains cell integrity and provides nutrients and basic building blocks required for growth. While glioblastoma is known to be particularly resistant to conventional therapies, recent research has suggested that these tumors are more sensitive to excessive overactivation of autophagy, leading to autophagy-dependent tumor cell death.
  • 331
  • 26 Jan 2022
Topic Review
STAT3 and STAT5 Activation in Solid Cancers
The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors.  Activation of Signal Transducer and Activator of Transcription (STAT) proteins has been linked to many human cancers. STATs were initially discovered as latent cytosolic transcription factors that are phosphorylated by the Janus Kinase (JAK) family upon stimulation of membrane-associated cytokine and growth factor receptors. Phosphorylation triggers STAT dimerization and translocation to the nucleus to bind specific promoters and regulate transcription
  • 279
  • 23 May 2022
Topic Review
STAT3
STAT3 is an important transcription factor that regulates cell growth and proliferation by regulating gene transcription of a plethora of genes.
  • 1.3K
  • 26 Aug 2021
Topic Review
STAT Proteins in Advanced and Metastasized Prostate Cancer
The STAT proteins bind to specific response elements on the DNA in the nucleus, thereby inducing gene transcription. Based on their various functions, STAT proteins are essential in several health conditions such as autoimmune diseases and cancer. Despite their broad spectrum of activity, only STAT3 affects embryonic development, as shown in STAT3 knock-out mouse experiments.
  • 537
  • 11 Oct 2021
Topic Review
STAT Activation and Signaling
There is a significant body of evidence that has demonstrated that Signal Transducers and Activators of Transcription (STATs) play a critical role in ovarian cancer progression. The STAT family is comprised of seven distinct proteins, STAT1, STAT2, STAT3, STAT4, STAT5A and 5B, and STAT6. The structure among STAT proteins remains highly conserved, with all STAT proteins encoding a coiled-coil (CC) domain, a DNA-binding (DB) domain, and a SRC homology 2 (SH2) domain.
  • 327
  • 29 Jun 2023
Topic Review
STAMP2 in Diabetes, Inflammatory Diseases and Cancers
STAMP2 plays a pivotal role in the pathogenesis of  type II diabetes, inflammation and cancers. The six transmembrane protein of prostate 2 (STAMP2), a metalloreductase involved in iron and copper homeostasis, is well known for its critical role in the coordination of glucose/lipid metabolism and inflammation in metabolic tissues. STAMP2 is a critical modulator for coordinating metabolism and inflammation. Although STAMP2 has been widely studied focusing on the inhibitory role in inflammation and metabolism, the underlying mechanism is not fully understood. In addition to its role in metabolism and inflammation, STAMP2 is also associated with tumorigenesis. For example, STAMP2 overexpression may increase ROS, which may contribute to increased mutational rates and further progression of prostate cancer.
  • 436
  • 02 Sep 2022
  • Page
  • of
  • 161
Video Production Service