Topic Review
Situation and Sorting of Textiles
The recovery and recycling of textile waste is becoming urgent since textiles are generating more and more waste. In one year, about 92 million tons of textile waste are produced and the fashion industry accounts for 58 million tons of plastic waste per year. Several different synthetic fibres are used in textiles, thanks to their excellent processability and mechanical properties, but on the other hand, the difficulties linked to their end of life and the release of microplastics from them during washing is currently a cause of great concern.
  • 477
  • 05 May 2023
Topic Review
Singlet Fission
Singlet fission is a process that occurs in organic molecules upon the absorption of light. It produces a singlet excited state (S1) in one molecule that is shared with a neighbouring one in the ground state (S0), thus splitting into two triplet excited states (T1).
  • 2.2K
  • 01 Jun 2021
Topic Review
Single-Molecule Sensors Based on STM Break Junction Measurements
Single-molecule recognition and detection with the highest resolution measurement has been one of the ultimate goals in science and engineering. Break junction techniques, originally developed to measure single-molecule conductance, recently have also been proven to have the capacity for the label-free exploration of single-molecule physics and chemistry, which paves a new way for single-molecule detection with high temporal resolution. Scanning tunneling microscopy-break junction (STM-BJ), invented to measure electron transport by repeatably forming single-molecule junctions in a nanogap between two electrodes, has also been a unique platform for exploring the intrinsic properties of materials and the interaction of individual molecules at a single-molecule level. The tunneling currents in the molecular junctions are sensitive to molecular structure and configuration, interfacial coupling between the anchoring group and electrode, external stimulus and the surroundings.
  • 371
  • 29 Aug 2022
Topic Review
Single-Molecule Chemical Reactions Unveiled in Molecular Junctions
Understanding chemical processes at the single-molecule scale represents the ultimate limit of analytical chemistry. Single-molecule detection techniques allow one to reveal the detailed dynamics and kinetics of a chemical reaction with unprecedented accuracy. It has also enabled the discoveries of new reaction pathways or intermediates/transition states that are inaccessible in conventional ensemble experiments, which is critical to elucidating their intrinsic mechanisms.
  • 334
  • 12 Dec 2022
Topic Review
Single-Crystal Nickel-Cobalt-Manganese Cathode Research
The booming electric vehicle industry continues to place higher requirements on power batteries related to economic-cost, power density and safety. The positive electrode materials play an important role in the energy storage performance of the battery. The nickel-rich NCM (LiNixCoyMnzO2 with x + y + z = 1) materials have received increasing attention due to their high energy density, which can satisfy the demand of commercial-grade power batteries. Prominently, single-crystal nickel-rich electrodes with s unique micron-scale single-crystal structure possess excellent electrochemical and mechanical performance, even when tested at high rates, high cut-off voltages and high temperatures.
  • 1.2K
  • 27 Dec 2022
Topic Review
Single-Component Cationic Photoinitiators
With the advantages offered by cationic photopolymerization (CP) such as broad wavelength activation, tolerance to oxygen, low shrinkage and the possibility of “dark cure”, it has attracted extensive attention in photoresist, deep curing and other fields in recent years. The applied photoinitiating systems (PIS) play a crucial role as they can affect the speed and type of the polymerization and properties of the materials formed. Much effort has been invested into developing cationic photoinitiating systems (CPISs) that can be activated at long wavelengths and overcome technical problems and challenges faced. 
  • 686
  • 24 Jul 2023
Topic Review
Single-Chain Amphiphilic Polymeric Nanoparticles
Here, we report the creation of amphiphilic polymers based on the presence of a high-molecular weight hydrophobic poly(epichlorohydrin) backbone and hydrophobic pendant oligomeric poly(ethylene glycol) chains, whereby a combination of hydrophilicity and hydrophobicity induce folding of an individual polymer chain into a single-chain polymeric nanoparticle (SCPN) (1) at high solution concentrations, (2) without requiring addition of catalysts and additives, (3) in the absence of external stimuli, and (4) under ambient aqueous conditions. Thus, this approach can be an effective way to generate water-soluble SCPNs; this breakthrough in the development of SCPNs may enable a significant advance in enabling the broad application of biomedical fields.
  • 856
  • 09 Nov 2020
Topic Review
Single-Atom Nanozymes for Tumor Diagnosis and Therapy
Nanozymes, which combine enzyme-like catalytic activity and the biological properties of nanomaterials, have been widely used in biomedical fields. Single-atom nanozymes (SANs) with atomically dispersed metal centers exhibit excellent biological catalytic activity due to the maximization of atomic utilization efficiency, unique metal coordination structures, and metal–support interaction, and their structure–activity relationship can also be clearly investigated. Therefore, they have become an emerging alternative to natural enzymes. 
  • 136
  • 24 Nov 2023
Topic Review
Single Tungsten Atom Catalysts
Single-atom catalysts (SACs) are defined as single or isolated metal atoms with catalytic activity anchored on the support that forms a composite catalyst with catalytic activity, which is a forward direction in the field of heterogeneous catalysis.
  • 525
  • 10 Aug 2022
Topic Review
Single Component Oil in Edible Oil Blends
Edible oil blends are composed of two or more edible oils in varying proportions, which can ensure nutritional balance compared to oils comprising a single component oil. In view of their economical and nutritional benefits, quantitative analysis of the component oils in edible oil blends is necessary to ensure the rights and interests of consumers and maintain fairness in the edible oil market. An introduction to the basic concept of single component oil in edible oil blends is provided. The importance of the quantitative analysis of single component oil in edible oil blends and provides several analytical methods used for single component oil quantification is described. 
  • 401
  • 19 Aug 2022
  • Page
  • of
  • 467
Video Production Service