Topic Review
Graphene Sensors
Graphene is one of the most promising materials for gas-sensor applications.
  • 629
  • 07 Apr 2021
Topic Review
Graphene Quantum Dots–Nanocellulose Composite
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible, and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research to advanced technology. Studies have shown that the hybridisation of these novel materials not only improves existing applications but provides additional advantages as well as further improves desirable features, all of which are unattainable if GQDs and nanocellulose are used individually. Therefore, this advantageous composite material warrants remarkable applications. Potential applications for GQDs-nanocellulose composites include sensing or for analytical purposes, injectable 3D printing materials, supercapacitors, and light-emitting diodes. 
  • 717
  • 20 Oct 2021
Topic Review
Graphene Quantum Dots (GQDs)
Graphene quantum dots (GQDs) are small fragments of graphene with lateral dimensions less than 100 nm, with properties deriving from both graphene and carbon points.
  • 892
  • 11 May 2021
Topic Review
Graphene Oxide-Coated Gold Nanorods
The application of gold nanorods (AuNRs) and graphene oxide (GO) has been widely studied due to their unique properties. Although each material has its own challenges, their combination produces an exceptional material for many applications such as sensor, therapeutics, and many others
  • 655
  • 13 Nov 2020
Topic Review
Graphene Oxide-Based Multi-Functionalization Coatings
Graphene oxide (GO), derived from the two-dimensional nanosheet graphene, has received unprecedented attention in the field of metal corrosion protection owing to its excellent barrier performance and various active functional groups. 
  • 444
  • 30 Jun 2023
Topic Review
Graphene Oxide-Based Anticorrosive Coatings
Graphene oxide was extensively used in the last few years due to its remarkable assets and proved to have a significant contribution to composite materials. Concerning the graphene-based coatings, the synthesis methods, protective function, anticorrosion mechanism, feasible problems, and some methods to improve the overall properties were highlighted. Regarding the contribution of the nanostructure used to improve the capability of the material, several modification strategies for graphene oxide along with the synergistic effect exhibited when functionalized with other compounds were mainly discussed.
  • 2.4K
  • 10 Dec 2020
Topic Review
Graphene Oxide Thin Films with Drug Delivery Function
Graphene oxide has been used in different fields of nanomedicine as a manager of drug delivery due to its inherent physical and chemical properties that allow its use in thin films with biomedical applications. Several studies demonstrated its efficacy in the control of the amount and the timely delivery of drugs when it is incorporated in multilayer films. It has been demonstrated that graphene oxide layers incorporated in drug delivery systems are able to work either as a nanocarrier, transporting the drugs to their targets or as a barrier delaying the release of drugs to accommodate the treatment schedules. This allows for the development of structured ,sophisticated and time-controlled systems.
  • 658
  • 22 Apr 2022
Topic Review
Graphene Oxide Obtained by Different Methods
Two-dimensional sp2 hybridized graphene has become a material of choice in research due to the excellent properties it displays electrically, thermally, optically and mechanically. Noble nanomaterials also present special physical and chemical properties and, therefore, they provide model building blocks in modifying nanoscale structures for various applications, ranging from nanomedicine to catalysis and optics. The introduction of noble metal nanoparticles (NPs) (Au, Ag and Pd) into chemically derived graphene is important in opening new avenues for both materials in different fields where they can provide hybrid materials with exceptional performance due to the synergistical result of the specific properties of each of the materials. 
  • 515
  • 14 Mar 2023
Topic Review
Graphene Oxide Hybrids for Environmental Applications
Graphene-oxide-based metal hybrids (GM) are used for the rapid and efficient reduction and removal of toxic adulterants in the environment. The exceptionally high specific surface area, versatile surface chemistry, and exceptional customization efficiency of graphene oxide nanosheets combined with the adaptable chemistry of metal nanoparticles enable the formation of GM hybrid nanocomposites. However, little is known about the architecture of GM nanocomposite engineering, interaction mechanisms, and environmental compatibility.
  • 579
  • 28 Dec 2022
Topic Review
Graphene Oxide for Organic Compounds Magnetic Solid-Phase Extraction
Graphene oxide (GO) is a chemical compound with a form similar to graphene that consists of one-atom-thick two-dimensional layers of sp2-bonded carbon. Graphene oxide exhibits high hydrophilicity and dispersibility. Thus, it is difficult to be separated from aqueous solutions. Therefore, functionalization with magnetic nanoparticles is performed in order to prepare a magnetic GO nanocomposite that combines the sufficient adsorption capacity of graphene oxide and the convenience of magnetic separation. Moreover, the magnetic material can be further functionalized with different groups to prevent aggregation and extends its potential application. A plethora of magnetic GO hybrid materials have been synthesized and successfully employed for the magnetic solid-phase extraction of organic compounds from environmental, agricultural, biological, and food samples. The developed GO nanocomposites exhibit satisfactory stability in aqueous solutions, as well as sufficient surface area.
  • 220
  • 17 Jul 2023
  • Page
  • of
  • 467
ScholarVision Creations