Topic Review
Magnetic Solid Nanoparticles and Their Counterparts
Cancer is a malignant disease involving uncontrolled and rapid growth of aberrant and nonfunctional cells as a result of epigenetic and genetic modifications. These have the capacity to metastasize to distant organs of the body. Within the cancer field, magnetic nanoparticles (MNPs) have gained interest as highly functionalized tools that can be applied to diagnosis, monitorization, and therapy. Their relative straightforward synthesis, functionalization, purification, and characterization, together with their usually good biodegradability and diagnostic platform potential, confer major advantages for their use in cancer theranostics. Magnetic solid lipid nanoparticles (mSLNs) represent a new class of functional nanoplatforms that usually consist of inorganic magnetic nanoparticles incorporated in solid lipid nano-matrices and which have great applicability in the medical field.
  • 710
  • 11 Mar 2022
Topic Review
Magnetic Sample Preparation Methods Prior to Liquid Chromatography
Magnetic nanomaterials and nanostructures compose an innovative subject in sample preparation. Most of them are designed according to the properties of the target analytes on each occasion. The unique characteristics of nanomaterials enhance the proficiency at extracting and enriching due to their selective adsorption ability as well as easy separation and surface modification. Their remarkable properties, such as superparamagnetism, biocompatibility and selectivity have established magnetic materials as very reliable options in sample preparation approaches.
  • 192
  • 12 Jul 2023
Topic Review
Magnetic Properties and Magnetocaloric Effect of Pr2Co7 Compound
The Pr2Co7 compound has interesting magnetic properties, such as a high Curie temperature TC and uniaxial magnetocrystalline anisotropy. It crystallizes in a hexagonal structure (2:7 H) of the Ce2Ni7 type and is stable at relatively low temperatures (Ta ≤ 1023 K), or it has a rhombohedral structure (2:7 R) of the Gd2Co7 type and is stable at high temperatures (Ta ≥ 1223 K). Studies of the magnetocaloric properties of the nanocrystalline Pr2Co7 compound have shown the existence of a large reversible magnetic entropy change (ΔSM) with a second-order magnetic transition. 
  • 617
  • 15 Jun 2023
Topic Review
Magnetic Polymers for Microfluidic Sorting
Magnetophoresis offers many advantages for manipulating magnetic targets in microsystems. The integration of micro-flux concentrators and micro-magnets allows achieving large field gradients and therefore large reachable magnetic forces. However, the associated fabrication techniques are often complex and costly, and besides, they put specific constraints on the geometries. Magnetic composite polymers provide a promising alternative in terms of simplicity and fabrication costs, and they open new perspectives for the microstructuring, design, and integration of magnetic functions.
  • 1.0K
  • 30 Jul 2021
Topic Review
Magnetic Polymer Nanocomposites for Aerospace Applications
Polymers have had an enormous impact on science and technology, and their interest relating to the development of new macromolecular materials has exponentially increased. Polymer nanocomposites, materials based on a polymeric matrix covalently coupled to reinforcement, display properties of both components. In the aerospace industry, polymer nanocomposites are attractive due to their promising characteristics, among which lightness, mechanical and thermal resistance, radiation and corrosion resistance, and conductive and magnetic properties stand out. The use of them, instead of metal-based materials, has allowed the optimization of design processes and applications in order to provide safer, faster, and eventually cheaper transportation in the future. 
  • 706
  • 25 Oct 2022
Topic Review
Magnetic Plasmonic Particles for Bioapplications
The surface-enhanced Raman scattering (SERS) technique, that uses magnetic plasmonic particles (MPPs), is an advanced SERS detection platform owing to the synergetic effects of the particles’ magnetic and plasmonic properties. As well as being an ultrasensitive and reliable SERS material, MPPs perform various functions, such as aiding in separation, drug delivery, and acting as a therapeutic material.
  • 800
  • 01 Jun 2021
Topic Review
Magnetic Oxide Nanoparticle
Magnetic oxide nanoparticles are novel building blocks and vehicle for wastewater detoxification; their stable nature makes them preferable to their metallic counterparts. The inherent properties of magnetic oxide nanoparticles such as facile preparation, ease of recovery and functionalization, reusability, promotes their biocompatibility and adaptation in wastewater treatment. 
  • 620
  • 27 Oct 2020
Topic Review
Magnetic Nanostructures for Cancer Immunotherapy
Magnetic nanoparticles (MNPs) represent an attractive class of nanomaterials due to their unique physical and chemical features that allow them to respond specifically to magnetic fields. Among the magnetic class of materials, iron oxide-based nanoparticles are the only inorganic nanomaterials that have been approved by the Food and Drug Administration (FDA) for medical applications. Magnetic nanomaterials are particularly appealing for cancer immunotherapy due to their unique features, which include (i) the traceability of their signal by magnetic resonance imaging (MRI) or by magnetic particle imaging (MPI) techniques ; (ii) their exploitation as carriers to promote the accumulation and the efficient delivery of biotherapeutic compounds, such as genes and peptides, into a specific target cell or tissue; (iii) their ability to mediate the elimination of cancer cells through the production of a local thermo-ablative effect when exposed to an external alternating magnetic field, referred to as magnetic hyperthermia therapy (MHT); and (iv) their intrinsic immunomodulatory properties that can be harnessed to further promote or modulate the immune function.
  • 611
  • 07 Jul 2021
Topic Review
Magnetic nanoparticles: coating and applications
Magnetic nanoparticles (MNPs) have great potential in material science, drug delivery, magnetic resonance imaging, and therapeutic applications. Indeed, a number of iron oxide nanoparticles have been withdrawn due to their poor clinical performance and/or toxicity issues. MNPs have successfully been converted into water-soluble, stable, bio-accessible systems using the proprietary various coating strategy. Herein, we summarize the data of applications and coating strategies of MNPs.
  • 916
  • 11 Jan 2022
Topic Review
Magnetic Nanoparticles in Bone Tissue Engineering
Large bone defects with limited intrinsic regenerative potential represent a major surgical challenge and are associated with a high socio-economic burden and severe reduction in the quality of life. Tissue engineering approaches offer the possibility to induce new functional bone regeneration, with the biomimetic scaffold serving as a bridge to create a microenvironment that enables a regenerative niche at the site of damage. Magnetic nanoparticles have emerged as a potential tool in bone tissue engineering that leverages the inherent magnetism of magnetic nano particles in cellular microenvironments providing direction in enhancing the osteoinductive, osteoconductive and angiogenic properties in the design of scaffolds. There are conflicting opinions and reports on the role of MNPs on these scaffolds, such as the true role of magnetism, the application of external magnetic fields in combination with MNPs, remote delivery of biomechanical stimuli in-vivo and magnetically controlled cell retention or bioactive agent delivery in promoting osteogenesis and angiogenesis. 
  • 418
  • 15 Mar 2022
  • Page
  • of
  • 467
ScholarVision Creations