Topic Review
Medicinally Viable Plants of the Genus Tylophora
Plants of the genus Tylophora have commonly been used in traditional medicine in various communities, especially in the tropical and subtropical regions of climatic zones. Of the nearly 300 species reported in the Tylophora genus, eight are primarily used in various forms to treat a variety of bodily disorders based on the symptoms. Certain plants from the genus have found use as anti-inflammatory, anti-tumor, anti-allergic, anti-microbial, hypoglycemic, hypolipidemic, anti-oxidant, smooth muscle relaxant, immunomodulatory, and anti-plasmodium agents, as well as free-radical scavengers. Pharmacologically, a few plant species from the genus have exhibited broad-spectrum anti-microbial and anti-cancer activity, which has been proven through experimental evaluations. Some of the plants in the genus have also helped in alcohol-induced anxiety amelioration and myocardial damage repair. The plants belonging to the genus have also shown diuretic, anti-asthmatic, and hepato-protective activities. Tylophora plants have afforded diverse structural bases for secondary metabolites, mainly belonging to phenanthroindolizidine alkaloids, which have been found to treat several diseases with promising pharmacological activity levels. 
  • 563
  • 09 Mar 2023
Topic Review
Medicinal Use of Testosterone
Testosterone derivatives and related compounds (such as anabolic-androgenic steroids—AAS) are frequently misused by athletes (both professional and amateur) wishing to promote muscle development and strength or to cover AAS misuse.
  • 1.4K
  • 11 Jun 2021
Topic Review
Medicinal Potential of Isoflavonoids
In recent years, there is emerging evidence that isoflavonoids could play an important role in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. 
  • 550
  • 28 Sep 2021
Topic Review
Medicinal Chemistry of Analgesic and Anti-Inflammatory Quinazoline Compounds
Quinazoline is an essential scaffold, known to be linked with various biological activities. Some of the prominent biological activities of this system are analgesic, anti-inflammatory, anti-hypertensive, anti-bacterial, anti-diabetic, anti-malarial, sedative–hypnotic, anti-histaminic, anti-cancer, anti-convulsant, anti-tubercular, and anti-viral activities. This diversity in the pharmacological response of the quinazoline system has encouraged medicinal chemists to study and discover this system and its multitude of potential against several biological activities.
  • 588
  • 08 Dec 2022
Topic Review
Medicinal  Application of Palladium Nanoparticles
Palladium (Pd), a noble metal, has unique properties for C-C bond formation in reactions such as the Suzuki and Heck reactions. Besides Pd-based complexes, Pd NPs have also attracted significant attention for applications such as fuel cells, hydrogen storage, and sensors for gases such as H2 and non-enzymatic glucose, including catalysis. Additionally, Pd NPs are catalysts in environmental treatment to abstract organic and heavy-metal pollutants such as Cr (VI) by converting them to Cr(III). In terms of biological activity, Pd NPs were found to be active against Staphylococcus aureus and Escherichia coli, where 99.99% of bacteria were destroyed, while PVP-Pd NPs displayed anticancer activity against human breast cancer MCF7.
  • 290
  • 26 Oct 2023
Topic Review
Medical Textiles and Aromatherapy
Studies on aromatherapy and textiles published between 2011–2021 were examined to explore “textile” materials as a possible carrier for essential oils. Essential oil-based bio-functional textiles for biocidal applications and therapeutic effects are reviewed.
  • 498
  • 19 Jan 2022
Topic Review
Medical Applications of Metallic Bismuth Nanoparticles
In the diagnostic field, preclinical proofs of concept have been demonstrated for X-ray, photoacoustic and fluorescence imaging. In the therapeutic field, several preclinical studies have shown the potential of bismuth nanoparticles as X-ray radiosensitizers for use in radiotherapy and as photothermal agents for applications in near infrared phototherapy.
  • 761
  • 10 Nov 2021
Topic Review
Medical Applications of Hybrid Hydrogels Containing Natural Polymers
Hybrid hydrogels definition is still debatable. They are defined either as a complex composed  chemically or physically cross-linking structures, or it refers to systems combining different polymers and/or with nanoparticles, such as plasmonic, magnetic, and carbonaceous nanoparticles, among others, or they are constituted by chemically, functionally, and morphologically distinct features from at least two different classes of molecules, which can include biologically active polymers as polysaccharides and/or proteins, peptides, or nano/microstructures, interconnected via physical or chemical means.
  • 1.7K
  • 29 Mar 2022
Topic Review
Medical and Dental Applications of Titania Nanoparticles
Titanium oxide (TiO2) nanoparticles are successfully employed in human food, drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and bio-compatible nature when used in direct close contact with the human body. These NPs are the most versatile oxides as a result of their acceptable chemical stability, lower cost, strong oxidation properties, high refractive index, and enhanced aesthetics. These NPs are fabricated by conventional (physical and chemical) methods and the latest biological methods (biological, green, and biological derivatives), with their advantages and disadvantages in this epoch. The significance of TiO2 NPs as a medical material includes drug delivery release, cancer therapy, orthopedic implants, biosensors, instruments, and devices, whereas their significance as a dental biomaterial involves dentifrices, oral antibacterial disinfectants, whitening agents, and adhesives. In addition, TiO2 NPs play an important role in orthodontics (wires and brackets), endodontics (sealers and obturating materials), maxillofacial surgeries (implants and bone plates), prosthodontics (veneers, crowns, bridges, and acrylic resin dentures), and restorative dentistry (GIC and composites).
  • 791
  • 02 Nov 2022
Topic Review
Mechanochemistry in Portugal
In Portugal, publications with mechanochemical methods date back to 2009, with the report on mechanochemical strategies for the synthesis of metallopharmaceuticals. Since then, mechanochemical applications have grown in Portugal, spanning several fields, mainly crystal engineering and supramolecular chemistry, catalysis, and organic and inorganic chemistry.
  • 734
  • 24 Jan 2022
  • Page
  • of
  • 467
ScholarVision Creations