Topic Review
Metal-Nitrosophenolato Complexes
Metal-nitrosophenolato complexes consist of a metal ion (most commonly copper(II)) flanked by typically two or more 2-nitrosophenolate ligands. The syntheses of them demonstrate a privileged introduction of a nitroso (and a hydroxyl via the Baudisch reaction) group to an aromatic ring. These complexes first appeared in the literature as early as 1939, and a range of applications has subsequently been published. However, optimisations of the preparative sequences were not considered, and as such, the reactions have seldom been utilised in recent years; indeed, there remains confusion in the literature as to how such complexes form.
  • 760
  • 15 Dec 2021
Topic Review
Metal-Functionalized Mesoporous Silica Films
This entry opens up a discussion on a new method of the functionalization of silica thin films with metal ions inside pores. The main idea of this method is based on the fact, that it is possible to finely tune the functionalization level by controlling the co-condensation procedure, notably the ratio of the ordinary silica source (usually tetraethyl orthosilicate) and silica source with the attached functional groups (for example, (3-cyanopropyl)triethoxysilane) in the synthesis medium. Depending on the ratio of these two components during the synthesis route, the number of functional groups in the final film - and the amount of further adsorbed on them (or their derivatives) metal ions - can be precisely controlled. 
  • 524
  • 26 Jul 2021
Topic Review
Metal-Free Carbon-Based Supercapacitors-A Comprehensive Review
This state-of-the-art entry aims to highlight  advances in metal-free carbon-based supercapacitors over the last 20 years. Author discuss the various types of carbons (without metals) used (activated, nanoforms of carbon, and doped carbons) as well as key parameters in supercapacitor performance such as surface area, porosity, and functional groups.
  • 1.2K
  • 18 Jan 2021
Topic Review
Metal-Catalyzed Synthesis of the OSe Compounds
Organoselenium (OSe) compounds have recently gained considerable interest as a potential class of organic motifs due to their outstanding applications in synthetic organic and medicinal chemistry and their possible properties in materials science. These are attributed to the exceptional properties of the selenium (Se) element.
  • 632
  • 02 Jun 2022
Topic Review
Metal-Based Nanomaterials
Metal-based nanomaterials could be widely used in biomedical fields, as metal ions are essential in living organisms. Since the particle size of the virus particles ranges from tens to hundreds of nanometers, the surface activity of the metal material is enhanced after the metal is nanosized. It can be used in the inhibition of virus infection.
  • 2.4K
  • 09 Dec 2021
Topic Review
Metal-Based Chemotherapeutic Treatments
Herein we provides an overview of the various research approaches we have explored in recent years to improve metal-based agents for cancer or infection treatments. Although cisplatin, carboplatin, and oxaliplatin remain the cornerstones in tumor chemotherapy, the discovery and approval of novel inorganic anticancer drugs is a very slow process. Analogously, although a few promising inorganic drugs have found clinical application against parasitic or bacterial infections, their use remains relatively limited. Moreover, the discovery process is often affected by small therapeutic enhancements that are not attractive for the pharmaceutical industry. However, the availability of increasing mechanistic information for the modes of action of established inorganic drugs is fueling the exploration of various approaches for developing effective inorganic chemotherapy agents. Through a series of examples, some from our own research experience, we focus our attention on a number of promising strategies, including (1) drug repurposing, (2) the simple modification of the chemical structures of approved metal-based drugs, (3) testing novel drug combinations, and (4) newly synthesized complexes coupling different anticancer drugs. Accordingly, we aim to suggest and summarize a series of reliable approaches that are exploitable for the development of improved and innovative treatments.
  • 666
  • 25 May 2021
Topic Review
Metal Phosphates and Pyrophosphates as Proton Conductors
It is about the progress in metal phosphate structural chemistry focused on proton conductivity properties. Attention is paid to structure–property relationships, which ultimately determine the potential use of metal phosphates and derivatives in devices relying on proton conduction. The origin of their conducting properties, including both intrinsic and extrinsic conductivity, is rationalized in terms of distinctive structural features and the presence of specific proton carriers or the factors involved in the formation of extended hydrogen-bond networks.
  • 700
  • 19 Apr 2022
Topic Review
Metal Oxides for CO2 Capture and Conversion
Metal oxides are essential in determining the overpotential and product selectivity in the CO2reduction reactions (CO2RR). In contrast, developing efficient and stable metal oxides is a significant challenge that must be achieved to lower the production cost of fuels in the practical implementation of CO2RR technologies. 
  • 2.5K
  • 14 Apr 2022
Topic Review
Metal Oxide-Based Photocatalysts for CO2 Reduction
The photoconversion of CO2 into solar fuels seems to curb greenhouse effect and resolve the energy crisis. One of the challenges in developing practical CO2 photoconversion catalysts is to design materials with a low cost, high activity and good stability. The excellent photocatalysts based on TiO2, WO3, ZnO, Cu2O and CeO2 metal oxides that are cost-effective and long-lasting were discussed. Strategies to improve CO2 photoconversion efficiency are summarized and photocatalysts forms of 0D, 1D, 2D and 3DOM (zero/one/two-dimensional and three-dimensional-ordered macroporous, respectively) are involved, which can inspire the future improvement in photochemistry.
  • 536
  • 21 Mar 2023
Topic Review
Metal Oxide-Based Photocatalysis
The improper disposal of toxic and carcinogenic organic substances resulting from the manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water resources and cause serious damage to animal and human health and to the ecosystem. In this sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides or between these oxides and other functional semiconductor materials, have gained increasing attention from researchers and industrial developers as a potential alternative to produce efficient and environmentally friendly photocatalysts for the remediation of water contamination by organic compounds.
  • 552
  • 08 Aug 2023
  • Page
  • of
  • 467
ScholarVision Creations