Topic Review Peer Reviewed
Perovskite-Type Oxides as Exsolution Catalysts in CO2 Utilization
Perovskite-type oxides (ABO3) are a highly versatile class of materials. They are compositionally flexible, as their constituents can be chosen from a wide range of elements across the periodic table with a vast number of possible combinations. This flexibility enables the tuning of the materials’ properties by doping the A- and/or B-sites of the base structure, facilitating the application-oriented design of materials. The ability to undergo exsolution under reductive conditions makes perovskite-type oxides particularly well-suited for catalytic applications. Exsolution is a process during which B-site elements migrate to the surface of the material where they form anchored and finely dispersed nanoparticles that are crucially important for obtaining a good catalytic performance, while the perovskite base provides a stable support. Recently, exsolution catalysts have been investigated as possible materials for CO2 utilization reactions like reverse water–gas shift reactions or methane dry reforming.
  • 588
  • 13 Dec 2023
Topic Review
Perovskite Solar Cells with ZnO Electron Transport Layer
Perovskite solar cells (PSCs) have experienced rapid development in the past period of time, and a record efficiency of up to 25.7% has been yielded. The PSCs with the planar structure are the most prevailing, which not only can significantly simplify the device fabrication process but also reduce the processing temperature. Particularly, the electron transport layer (ETL) plays a critical role in boosting the device performance of planar PSCs. ZnO is a promising candidate as the ETL owing to its high transparency, suitable energy band structure, and high electron mobility. Moreover, ZnO is easy to be processed at a low cost and low energy. 
  • 664
  • 05 Jan 2023
Topic Review
Perovskite Semiconductor Field–Effect Transistors
Perovskite materials are considered as the most alluring successor to the conventional semiconductor materials to fabricate solar cells, light emitting diodes and electronic displays. However, the use of the perovskite semiconductors as a channel material in field effect transistors (FET) are much lower than expected due to the poor performance of the devices. Despite low attention, the perovskite FETs are used in widespread applications on account of their unique opto-electrical properties. 
  • 1.6K
  • 27 Jul 2022
Topic Review
Perovskite Nanomaterial
Recently, perovskite-based nanomaterials are utilized in diverse sustainable applications. Their unique structural characteristics allow researchers to explore functionalities towards diverse directions, such as solar cells, light emitting devices, transistors, sensors, etc. Many perovskite nanomaterial-based devices have been demonstrated with extraordinary sensing performance to various chemical and biological species in both solid and solution states. In particular, perovskite nanomaterials are capable of detecting small molecules such as O2, NO2, CO2, etc. This review elaborates the sensing applications of those perovskite materials with diverse cations, dopants and composites. Moreover, the underlying mechanisms and electron transport properties, which are important for understanding those sensor performances, will be discussed. Their synthetic tactics, structural information, modifications and real time sensing applications are provided to promote such perovskite nanomaterials-based molecular designs. Lastly, we summarize the perspectives and provide feasible guidelines for future developing of novel perovskite nanostructure-based chemo- and biosensors with real time demonstration.
  • 2.6K
  • 17 Jul 2020
Topic Review
Perovskite Materials
In the development of hydrogen-based technology, a key challenge is the sustainable production of hydrogen in terms of energy consumption and environmental aspects. However, existing methods mainly rely on fossil fuels due to their cost efficiency, and as such, it is difficult to be completely independent of carbon-based technology. Electrochemical hydrogen production is essential, since it has shown the successful generation of hydrogen gas of high purity. Similarly, the photoelectrochemical (PEC) method is also appealing, as this method exhibits highly active and stable water splitting with the help of solar energy. We discuss the exceptional optical and electrical characteristics of perovskite materials which often dictate PEC performance. We further extend our discussion to the material limit of perovskite under a hydrogen production environment, i.e., that PEC reactions often degrade the contact between the electrode and the electrolyte.
  • 6.6K
  • 30 Jul 2021
Topic Review
Perovskite Catalysts in Zinc-Air Batteries
The Zinc-air battery (ZAB) has become a hot research topic due to its high energy densities. As an important category of catalysts for ZAB, perovskites have attracted extensive interests because of their environmentally friendly properties, cheapness, and excellent electrocatalytic performances.
  • 411
  • 09 Dec 2022
Topic Review
Permeation Enhancers of Hormones Penetration through the Skin
Hormones have attracted considerable interest in recent years due to their potential use in treatment of many diseases. Their ability to have a multidirectional effect leads to searching for new and increasingly effective drugs and therapies. Limitations in formulating drug forms containing hormones are mainly due to their low enzymatic stability, short half-life and limited bioavailability. One of the solutions may be to develop a hydrogel as a potential hormone carrier, for epidermal and transdermal application. 
  • 681
  • 01 Sep 2022
Topic Review
Permafrost Carbon Cycle
The permafrost carbon cycle is a sub-cycle of the larger global carbon cycle. Permafrost is defined as subsurface material that remains below 0o C (32o F) for at least two consecutive years. Because permafrost soils remain frozen for long periods of time, they store large amounts of carbon and other nutrients within their frozen framework during that time. Permafrost represents a large carbon reservoir that is seldom considered when determining global terrestrial carbon reservoirs. Recent and ongoing scientific research however, is changing this view. The permafrost carbon cycle (Arctic Carbon Cycle) deals with the transfer of carbon from permafrost soils to terrestrial vegetation and microbes, to the atmosphere, back to vegetation, and finally back to permafrost soils through burial and sedimentation due to cryogenic processes. Some of this carbon is transferred to the ocean and other portions of the globe through the global carbon cycle. The cycle includes the exchange of carbon dioxide and methane between terrestrial components and the atmosphere, as well as the transfer of carbon between land and water as methane, dissolved organic carbon, dissolved inorganic carbon, particulate inorganic carbon and particulate organic carbon.
  • 768
  • 04 Nov 2022
Topic Review
Periodontitis Treatment
Fabrication of biomaterial that mimics a suitable biological microenvironment is still a major challenge in the field of periodontitis treatment. Hence, in this report, we presented for the first time the fabrication of a novel biomaterial 3D matrix using collagen combined with sodium alginate and titanium oxide (TiO2) to recreate the in-vivo microenvironment and to act as a platform for the culture of human periodontal ligament fibroblasts (HPLF) towards osteogenic differentiation.
  • 872
  • 29 Oct 2020
Topic Review
Periodontal Disease
Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives.
  • 605
  • 14 Jul 2021
  • Page
  • of
  • 467
ScholarVision Creations