Topic Review
Dendrimer–Protein Interactions
Proteins perform vital functions in the cell and in the whole organism. They participate in the transport of substances across the cell membrane, acting as receptors and structural units. The existence of enzymes ensures the passage of biochemical reactions. The drug administration, pharmacokinetic and pharmacodynamic processes are aligned with protein–drug interactions since the plasma contains more than 2400 proteins. Given the potential biomedical applications of dendrimers, the knowledge of their protein-binding properties, the driving force and mechanism of interactions, composition and characteristics of the formed complexes, dependence of structural and morphological changes in proteins on the dendrimer molecular characteristics is of particular importance.
  • 577
  • 26 Apr 2022
Topic Review
Chemogenetics and Optogenetics under General Anesthesia
General anesthesia has been widely utilized since the 1840s, but its underlying neural circuits remain to be completely understood. Chemogenetics and Optogenetics, the two techniques artificially modulate the activity of specific neurons and neural circuits.
  • 577
  • 02 Aug 2022
Topic Review
Pyrazole Biomolecules as Cancer and Inflammation Therapeutics
The pyrazole moiety is a heterocyclic ring system (five membered) with 3 C and 2 N in adjacent sites. Pyrazole compounds have an extensive past of applications, being used as herbicides, agrochemicals, and as active pharmaceutical agents. Pyrazole derivatives exhibit anti-inflammatory properties and have been shown to target several cancer cell lines, such as COX (I/II).
  • 577
  • 10 Feb 2023
Topic Review
Titanium Base Substrates
Titanium base alloys are state-of-the-art implant materials in various surgery applications, including dentistry, bone and craniofacial reconstruction/fixation, and temporary anchorage devices (TAD), etc. Titanium is a lightweight and bioinert metal that possesses a high specific strength (strength to density ratio) and an elastic modulus close to that of human bone. Titanium additionally features excellent corrosion resistance and relatively high X-ray translucency, thus facilitating post-treatment diagnosis. 
  • 576
  • 29 Jul 2021
Topic Review
Characteristics of Fresh UHPFRC
Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. 
  • 576
  • 05 Aug 2021
Topic Review
Polymers–HA Composite
Hydroxyapatite (HA), especially in the form of HA nanoparticles (HANPs), has excellent bioactivity, biodegradability, and osteoconductivity and therefore has been widely used as a template or additives for drug delivery in clinical applications, such as dentistry and orthopedic repair. Due to the atomically anisotropic distribution on the preferred growth of HA crystals, especially the nanoscale rod-/whisker-like morphology, HA can generally be a good candidate for carrying a variety of substances. HA is biocompatible and suitable for medical applications, but most drugs carried by HANPs have an initial burst release. In the adsorption mechanism of HA as a carrier, specific surface area, pore size, and porosity are important factors that mainly affect the adsorption and release amounts.
  • 576
  • 09 Mar 2022
Topic Review
Biochar in the Development of Electrochemical Printed Platforms
Biochar is a pyrolytic material with several environmental benefits such as reducing greenhouse gas emissions, sequestering atmospheric carbon and contrasting global warming. It has moved to the forefront for its conductivity and electron transfer properties, finding applications in the fabrication of electrochemical platforms. In this field, researchers have focused on low-cost biomass capable of replacing more popular and expensive carbonaceous nanomaterials (i.e., graphene, nanotubes and quantum dots) in the realization of sensitive cost-effectiveness and eco-friendly electrochemical tools. 
  • 576
  • 14 Sep 2022
Topic Review
Application of Non-Targeted Screening in Metabolites
Phyto products are widely used in natural products, such as medicines, cosmetics or as so-called “superfoods”. However, the exact metabolite composition of these products is still unknown, due to the time-consuming process of metabolite identification. Non-target screening by LC-HRMS/MS could be a technique to overcome these problems with its capacity to identify compounds based on their retention time, accurate mass and fragmentation pattern. In particular, the use of computational tools, such as deconvolution algorithms, retention time prediction, in silico fragmentation and sophisticated search algorithms, for comparison of spectra similarity with mass spectral databases facilitate researchers to conduct a more exhaustive profiling of metabolic contents. 
  • 576
  • 22 Dec 2022
Topic Review Peer Reviewed
Approaches to the Development of Advanced Alloys Based on Refractory Metals
The most promising directions of the development of heat-resistant alloys (HRAs) based on refractory metals are analyzed. The microstructures characteristic of HRAs, which it is advisable to form in promising alloys, are considered. The stability factors of the microstructure with respect to the diffusion coarsening of the hardening phases are discussed. Two groups of alloys are considered as the most promising HRAs based on refractory metals. First, the principles for design of HRAs based on (Pt, Ir)-Sc with heterophase γ-γ’ microstructure, where γ-matrix is a (Pt, Ir) solid solution with a FCC lattice, and γ’ is a strengthening phase with the structure L12 by analogy with Ni-base superalloys, are developed. The resistance of γ-γ’ microstructure in Ni, Pt and Ir alloys against the process of diffusion-limited coarsening is analyzed. It is shown that the diffusion permeability of Pt is several times less than that of Ni, so one should expect that Pt-based HRAs will not be inferior to Ni-based HRAs in terms of structural stability. The second group includes HRAs based on many not noble refractory metals. It is shown that solid solutions of the system (Ti, Zr, Hf, Ta, Nb) with a BCC lattice can be considered as a matrix of advanced refractory HRAs. The results of experimental studies of alloys based on (Ti, Zr, Hf, Ta, Nb) additionally alloyed with elements contributing to the formation of strengthening intermetallic and silicide phases are discussed. The issues of segregation of alloying elements at the grain boundaries of refractory alloys and the effect of segregation on the cohesive strength of the boundaries are considered.
  • 576
  • 13 Mar 2023
Topic Review
Role of Barbed Sutures in Reconstructive Surgery
Surgical ligatures are a critical component of any surgical procedure since they are the device that provides immediate post-surgical tissue apposition. There have been several studies to improve the design and use of these wound closure devices for different surgical procedures. Yet, there is no standardized technique or device that can be used for any specific application. Over the last two decades, there has been an increased focus on the innovative surgical sutures known as knotless or barbed sutures, along with studies focusing on their advantages and disadvantages in clinical environments. Barbed sutures were invented to reduce the localized stress on the approximated tissues as well as facilitating the surgical technique and improving the clinical outcome for the patient. Barbed sutures can be used in several surgical situations, such as emergency room procedures, general and thoracic applications, urological surgery, orthopedic and hand applications, obstetric and gynecological procedures, hair restoration and in the majority of plastic, reconstructive and cosmetic applications.
  • 576
  • 11 Apr 2023
  • Page
  • of
  • 467
ScholarVision Creations