Topic Review
Polymer Se-Nanocomposites Biofabricated Using Fungi
Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs’ properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. 
  • 678
  • 08 Jul 2021
Topic Review
Liquid Chromatography Separation Mechanism
Separation is a critical process to isolate a particular compound, whether it is a natural product or a synthetic product. Studies of a compound’s characteristics and elucidation structure provides reliable results for pure compounds because there is no interference from other compounds. The primary source of difficulty in a separation process is the high similarity between two or more compounds, such as racemic and homologous mixtures. Liquid chromatography has proven to be an effective solution to those problems. The key to liquid chromatography separation is a sustainable retention and elution process. Stationary phases are essential for separating compounds in liquid chromatography. Various liquid chromatography columns of both preparative and quantitative types have been used and continue to develop. This research will discuss the separation mechanism in liquid chromatography.
  • 678
  • 02 Mar 2022
Topic Review
Nanozyme Platforms for Antibacterial Applications
Some key enzymes or classes of enzymes, such as superoxide dismutase (SOD), catalase (CAT), oxidase (OXD), peroxidase (POD), deoxyribonuclease (DNase), etc., have been implicated in antibacterial therapy.
  • 678
  • 21 Jun 2022
Topic Review
Specific Bifunctionalization on the Phosphorus Dendrimers
Dendrimers are highly branched three-dimensional macromolecules, which properties are essentially dependent on the type of their terminal functions. Dendrimers are synthesized by iterative processes, which afford a new generation at the end of each sequence, characterized by a multiplication of the number of terminal functions. Such processes generate identical terminal functions on the surface of the dendrimers. However, it is sometimes desirable to have two types of surface functions in order to fulfil specific properties. Numerous properties have been explored already, most of them being related to catalysis, materials, or biology/nanomedicine. Strategies to get two types of terminal functions will be illustrated with polyphosphorhydrazone (PPH) dendrimers.
  • 678
  • 13 Sep 2022
Topic Review
Types of Micellar Assemblies
Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity.
  • 678
  • 08 Nov 2022
Topic Review
Endocrine Disruptors
Endocrine disruptors (EDs) are contaminants that may mimic or interfere with the body’s hormones, hampering the normal functions of the endocrine system in humans and animals. These substances, either natural or man-made, are involved in development, breeding, and immunity, causing a wide range of diseases and disorders. The traditional detection methods such as enzyme linked immunosorbent assay (ELISA) and chromatography are still the golden techniques for EDs detection due to their high sensitivity, robustness, and accuracy. Nevertheless, they have the disadvantage of being expensive and time-consuming, requiring bulky equipment or skilled personnel. On the other hand, early stage detection of EDs on-the-field requires portable devices fulfilling the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to end users (ASSURED) norms. Electrochemical impedance spectroscopy (EIS)-based sensors can be easily implemented in fully automated, sample-to-answer devices by integrating electrodes in microfluidic chips.
  • 677
  • 01 Dec 2020
Topic Review
SPE/DLLME for Determining Plasticizer Residues
This entry aims to compare two extraction procedures for the analysis of phthalates (PAE) in hot drinks collected from vending machines, usually coffee and tea. The two analytical procedures rely on solid phase extraction (SPE) using C18 cartridge and ultrasound and vortex assisted liquid-liquid dispersive microextraction (DLLME) to mechanically improve dispersion, each followed by a routine analytical method such as GC- FID. Seven phthalates (DMP, DEP, DiBP, DBP, DEHP, DOP, DDP) were analyzed and determined. All analytical parameters (i.e., recovery, limit of detection, limit of quantification, enrichment factors, repeatability, reproducibility) were studied and discussed, as well as the matrix effect. The whole procedure was applied to hot drink matrices, for example coffee, decaffeinated coffee.
  • 677
  • 13 Sep 2021
Topic Review
Thiazolidinedione Derivatives
Thiazolidinediones (TZDs) are a kind of DMII drug. The data revealed that compounds (4–6) have higher potency than the reference drugs. Compounds (4–7) were able to regulate hyperlipidemia levels (cholesterol, triglyceride, high-density lipoproteins and low- and very-low-density lipoproteins) to nearly normal value at the 30th day.
  • 677
  • 29 Jan 2022
Topic Review
Band Gap Engineering
Crystalline TiO2 (as rutile, anatase or brookite) can absorb only about 4% of the solar energy due to its large band gap in the range of 3.0–3.2 eV. As a consequence, the true incident photon conversion yield of most sun-light and semiconductor-assisted photoreactions is low. The aim of exploiting visible light can be achieved by applying various techniques such as doping or modification with metals and non-metals, coupling of semiconductors, or dye sensitization. Since only the former technique seems to allow cost-efficient and robust synthesis routes for realistic applications of titania coatings, this chapter will concentrate on metal and non-metal doping.
  • 677
  • 19 Oct 2022
Topic Review
Aluminium(I)
In chemistry, aluminium(I) refers to monovalent aluminium (+1 oxidation state) in both ionic and covalent bonds. Along with aluminium(II), it is an extremely unstable form of aluminium. While late Group 3 elements such as thallium and indium prefer the +1 oxidation state, aluminium(I) is rare. Unlike late Group XIII elements, aluminium does not experience the inert pair effect, a phenomenon where valence s electrons are poorly shielded from nuclear charge due to the presence of filled d and f orbitals. As such, aluminium (III) ([math]\ce{ Al^3+ }[/math]) is the much more common oxidation state for aluminium. Aluminium(I) compounds are both prone to disproportionation and difficult to prepare. At standard conditions, they readily oxidize to the aluminium(III) form.
  • 677
  • 14 Nov 2022
  • Page
  • of
  • 467
ScholarVision Creations